コード例 #1
0
from jmetal.algorithm.multiobjective.random_search import RandomSearch
from jmetal.problem import ZDT1
from jmetal.util.solution import read_solutions, print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = ZDT1()
    problem.reference_front = read_solutions(
        filename='resources/reference_front/ZDT1.pf')

    max_evaluations = 1000
    algorithm = RandomSearch(problem=problem,
                             termination_criterion=StoppingByEvaluations(
                                 max_evaluations=max_evaluations))

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(front, 'FUN.' + algorithm.label)
    print_variables_to_file(front, 'VAR.' + algorithm.label)

    print(f'Algorithm: ${algorithm.get_name()}')
    print(f'Problem: ${problem.get_name()}')
    print(f'Computing time: ${algorithm.total_computing_time}')
コード例 #2
0
        algorithm = NSGAIII(
            population_evaluator=MultiprocessEvaluator(Configuration.ProcessNum),
            problem=problem,
            population_size = Configuration.population,
            reference_directions=UniformReferenceDirectionFactory(Configuration.goal_num, n_points= Configuration.population - 1),
            # offspring_population_size = Configuration.population,
            mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
            crossover=SBXCrossover(probability=1.0, distribution_index=20),
            termination_criterion = StoppingByEvaluations(max_evaluations=max_evaluations)
            # termination_criterion = StoppingByQualityIndicator(quality_indicator=HyperVolume, expected_value=1,
            #                                                  degree=0.9)
            # selection = BinaryTournamentSelection()
        )
    elif Configuration.algorithm == 'Random':
        algorithm = RandomSearch(
            problem=problem,
            termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations)
        )


    """==========================调用算法模板进行种群进化========================="""
    progress_bar = ProgressBarObserver(max=max_evaluations)
    algorithm.observable.register(progress_bar)
    algorithm.run()
    front = algorithm.get_result()

    """==================================输出结果=============================="""
    # Save results to file
    print_function_values_to_file(front, os.path.join(target_dir, '/FUN.' + algorithm.label))
    print_variables_to_file(front, os.path.join(target_dir, '/VAR.' + algorithm.label))

    print(f'Algorithm: ${algorithm.get_name()}')
コード例 #3
0
 def configurar_RandomSearch(self):
     algorithm = RandomSearch(
                             problem = self.problema,
                             termination_criterion=StoppingByEvaluations(max_evaluations=self.evaluaciones))
     return algorithm
コード例 #4
0
from jmetal.lab.visualization import Plot, InteractivePlot

from jmetal.problem import ZDT1
from jmetal.util.observer import ProgressBarObserver, VisualizerObserver
from jmetal.util.solutions_utils import read_solutions, print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = ZDT1()
    problem.reference_front = read_solutions(
        filename='resources/reference_front/ZDT1.pf')

    max_evaluations = 1000
    algorithm = RandomSearch(
        problem=problem,
        termination_criterion=StoppingByEvaluations(max=max_evaluations))

    progress_bar = ProgressBarObserver(max=max_evaluations)
    algorithm.observable.register(observer=progress_bar)
    algorithm.observable.register(observer=VisualizerObserver(
        reference_front=problem.reference_front))

    algorithm.run()
    front = algorithm.get_result()

    # Plot front
    plot_front = Plot(plot_title='Pareto front approximation',
                      reference_front=problem.reference_front,
                      axis_labels=problem.obj_labels)
    plot_front.plot(front,