コード例 #1
0
def get_finance_indicator(code_list, date):
    # https://www.joinquant.com/help/api/help#Stock:%E8%B4%A2%E5%8A%A1%E6%8C%87%E6%A0%87%E6%95%B0%E6%8D%AE
    fields = [
        "eps", "adjusted_profit", "operating_profit", "value_change_profit",
        "roe", "inc_return", "roa", "net_profit_margin", "gross_profit_margin",
        "expense_to_total_revenue", "operation_profit_to_total_revenue",
        "net_profit_to_total_revenue", "operating_expense_to_total_revenue",
        "ga_expense_to_total_revenue", "financing_expense_to_total_revenue",
        "operating_profit_to_profit", "invesment_profit_to_profit",
        "adjusted_profit_to_profit", "goods_sale_and_service_to_revenue",
        "ocf_to_revenue", "ocf_to_operating_profit",
        "inc_total_revenue_year_on_year", "inc_total_revenue_annual",
        "inc_revenue_year_on_year", "inc_revenue_annual",
        "inc_operation_profit_year_on_year", "inc_operation_profit_annual",
        "inc_net_profit_year_on_year", "inc_net_profit_annual",
        "inc_net_profit_to_shareholders_year_on_year",
        "inc_net_profit_to_shareholders_annual"
    ]
    table = jq.indicator
    cond = jq.indicator.code.in_(code_list)
    order = jq.indicator.code.asc()
    query = jq.query(table).filter(cond).order_by(order)
    data_df = jq.get_fundamentals(query, date=date)
    if data_df.empty:
        return pd.DataFrame(
            {field: []
             for field in ["security"] + fields + ["date"]})
    # 字段重命名
    result_df = data_df.rename(columns={"code": "security", "day": "date"})
    # 调整字段顺序
    result_df = result_df[["security"] + fields + ["date"]]
    return result_df
コード例 #2
0
ファイル: universal.py プロジェクト: zofuthan/xalpha
def get_peb(index, date=None, table=False):
    """
    获取指数在指定日期的 pe 和 pb。采用当时各公司的最新财报和当时的指数成分股权重加权计算。

    :param index: str. 聚宽形式的指数代码。
    :param date: str. %Y-%m-%d
    :param table: Optioanl[bool], default False. True 时返回整个计算的 DataFrame,用于 debug。
    :return: Dict[str, float]. 包含 pe 和 pb 值的字典。
    """
    middle = dt.datetime.strptime(
        date.replace("/", "").replace("-", ""), "%Y%m%d"
    ).replace(day=1)
    iwdf = get_index_weight_range(
        index,
        start=(middle - dt.timedelta(days=5)).strftime("%Y-%m-%d"),
        end=(middle + dt.timedelta(days=5)).strftime("%Y-%m-%d"),
    )
    q = query(valuation).filter(valuation.code.in_(list(iwdf.code)))
    #     df = get_fundamentals(q, date)
    df = get_fundamentals(q, date=date)
    df = df.merge(iwdf, on="code")
    df["e"] = df["weight"] / df["pe_ratio"]
    df["b"] = df["weight"] / df["pb_ratio"]
    df["p"] = df["weight"]
    tote = df.e.sum()
    totb = df.b.sum()
    if table:
        return df
    return {"pe": 100.0 / tote, "pb": 100.0 / totb}
コード例 #3
0
def init_stock():
    jq.login()

    # 查询财务数据
    data = sdk.get_fundamentals(sdk.query(sdk.valuation), '2020-10-30')

    sql = "insert into security(code, market_cap, circulating_market_cap, pe_ratio, pb_ratio, ps_ratio, pcf_ratio, type) values (%s, %s, %s, %s, %s, %s, %s, %s)"

    args = []
    for i in data.index:
        code = data.iloc[i]['code']
        market_cap = is_nan(float(data.iloc[i]['market_cap']))

        if market_cap < 100:
            continue

        circulating_market_cap = is_nan(
            float(data.iloc[i]['circulating_market_cap']))
        pe_ratio = is_nan(float(data.iloc[i]['pe_ratio']))
        pb_ratio = is_nan(float(data.iloc[i]['pb_ratio']))
        ps_ratio = is_nan(float(data.iloc[i]['ps_ratio']))
        pcf_ratio = is_nan(float(data.iloc[i]['pcf_ratio']))
        arg = (code, market_cap, circulating_market_cap, pe_ratio, pb_ratio,
               ps_ratio, pcf_ratio, 'stock')

        print(arg)
        args.append(arg)

    my.insert_many(sql, args)

    del_st()
コード例 #4
0
def get_stock_list(cur_date='2018-06-26',
                   begin_date='2018-01-01',
                   MARKET_MIN_CAP=100,
                   MARKET_MAX_CAP=500):
    """
    获取从指定日期开始的,市值在指定区间的,非st,股票列表, 以及详细信息(code,circulating_cap,circulating_market_cap)
    """

    # 总市值在100-500亿
    q = jq.query(jq.valuation.code, jq.valuation.circulating_cap,
                 jq.valuation.circulating_market_cap).filter(
                     jq.valuation.code.notin_(['002473.XSHE',
                                               '000407.XSHE']),  # why?
                     jq.valuation.circulating_market_cap < MARKET_MAX_CAP,
                     jq.valuation.circulating_market_cap >= MARKET_MIN_CAP)

    df = jq.get_fundamentals(q, date=begin_date)
    df.index = list(df['code'])
    # 去除st
    st = jq.get_extras('is_st',
                       list(df['code']),
                       start_date=cur_date,
                       end_date=cur_date,
                       df=True)

    st = st.iloc[0]
    stock_list = list(st[st == False].index)

    return stock_list, df
コード例 #5
0
def get_indus_stk_df(stk_list, year):

    return jqdatasdk.get_fundamentals(
        query(valuation, income).filter(
            # 这里不能使用 in 操作, 要使用in_()函数
            valuation.code.in_(stk_list)),
        statDate=year)
コード例 #6
0
def get_annual_balancesheet(sec_code, statYYYY):
    q = jq.query(jq.balance).filter(jq.balance.code == sec_code, )

    ret = jq.get_fundamentals(q, statDate=statYYYY)

    if ret is None or len(ret) == 0:
        print "WARN: %s 于 %s 的资产表没查到 " % (sec_code, statYYYY)
    return ret
コード例 #7
0
def get_fundamentals_at_dt(order_book_ids, fields, dt):
    query_object = create_a_query_object(order_book_ids=order_book_ids,
                                         fields=fields)
    data_df = get_fundamentals(query_object, date=dt)
    # create multiindex
    data_df.set_index(['code'], inplace=True)
    data_df.rename_axis(index={"code": "order_book_id"}, inplace=True)
    return data_df
コード例 #8
0
def get_annual_indicator(sec_code, statYYYY):
    q = jq.query(jq.indicator).filter(jq.indicator.code == sec_code, )

    ret = jq.get_fundamentals(q, statDate=statYYYY)

    if ret is None or len(ret) == 0:
        print "WARN: %s 于 %s 的财务指标没查到 " % (sec_code, statYYYY)
    return ret
コード例 #9
0
def get_annual_cashflow(sec_code, statYYYY):
    q = jq.query(jq.cash_flow).filter(jq.cash_flow.code == sec_code, )

    ret = jq.get_fundamentals(q, statDate=statYYYY)

    if ret is None or len(ret) == 0:
        print "WARN: %s 于 %s 的现金流表没查到 " % (sec_code, statYYYY)
    return ret
コード例 #10
0
def update_market_cap(new_start_date, new_end_date, market_cap, close):
    # share 是持股数df,换成其他df也行,用来检测股票数量是否相等

    future_trade_days = get_trade_days(start_date=market_cap.index[-1],
                                       end_date=new_end_date)[1:]  # 第一天重复
    old_trade_days = get_trade_days(
        start_date=new_start_date, end_date=market_cap.index[0])[:-1]  # 最后一天重复
    new_trade_days = list(future_trade_days) + list(old_trade_days)

    if len(new_trade_days) > 0:
        for date in new_trade_days:
            market_cap.loc[date] = np.nan

        for date in tqdm(new_trade_days):
            df = get_fundamentals(query(valuation.code,
                                        valuation.market_cap).filter(
                                            valuation.code.in_(
                                                list(market_cap.columns))),
                                  date=date)
            market_cap.loc[date][df['code']] = df['market_cap'].values
    else:
        print("No need to Update")
    market_cap.index = pd.to_datetime(market_cap.index)
    # close 是持股数,用来检测股票数量是否相等, 新加入股票补齐

    new_stocks = list(set(close.columns).difference(set(market_cap.columns)))
    if len(new_stocks) > 0:
        print('total number of new stocks = {}'.format(len(new_stocks)))
        for s in new_stocks:
            market_cap[s] = np.nan

        for date in tqdm(list(market_cap.index)):
            df = get_fundamentals(query(valuation.code,
                                        valuation.market_cap).filter(
                                            valuation.code.in_(new_stocks)),
                                  date=datetime.date(date))
            # get_fundamentals 必须是 date格式的日期
            market_cap.loc[date][df['code']] = df['market_cap'].values

    market_cap = market_cap.sort_index(axis=0)  # 按index排序
    market_cap = market_cap.sort_index(axis=1)  # 按股票代码排序
    market_cap = market_cap.dropna(how='all', axis=0)
    market_cap.to_csv(
        '/Users/caichaohong/Desktop/Zenki/financials/market_cap.csv')
コード例 #11
0
def mt_save_financial_from_JQData(stk, start_date, end_date):
    '''
    从jqdata中获取财务数据指标indicator
    可以用一个dict来保存已增加通用性
    :param start_date:开始日期
    :param end_date:结束日期
    :return:获取的值
    '''

    queryDict = {'indicator': indicator, # 财务指标数据
                 'finance.STK_FIN_FORCAST': finance.STK_FIN_FORCAST, # 业绩预告
                 'finance.STK_INCOME_STATEMENT': finance.STK_INCOME_STATEMENT, # 合并利润表
                 'finance.STK_INCOME_STATEMENT_PARENT': finance.STK_INCOME_STATEMENT_PARENT, # 母公司利润表
                 'finance.STK_CASHFLOW_STATEMENT': finance.STK_CASHFLOW_STATEMENT, # 合并现金流表
                 'finance.STK_CASHFLOW_STATEMENT_PARENT': finance.STK_CASHFLOW_STATEMENT_PARENT, # 母公司现金流表
                 'finance.STK_BALANCE_SHEET': finance.STK_BALANCE_SHEET, # 合并资产表
                 'finance.STK_BALANCE_SHEET_PARENT': finance.STK_BALANCE_SHEET_PARENT, # 母公司资产表
                 }

    if stk not in queryDict.keys():
        return

    mydb = myClient['stockFinanceDbJQData']
    myCollection = mydb[stk]

    try:
        # 获取已有数据的datetimes
        ref_ = myCollection.distinct('datetime')
    except:
        ref_ = []

    q = query(queryDict[stk])
    df = pd.DataFrame()

    start_dt = datetime.datetime.strptime(start_date, '%Y-%m-%d')
    end_dt = datetime.datetime.strptime(end_date, '%Y-%m-%d')

    delta = relativedelta(months=3)
    while start_dt < end_dt:
        quarter_para = "{0}q{1}".format(start_dt.year, start_dt.month // 3 + 1)

        if quarter_para in ref_:
            pass
        else:
            
            df = get_fundamentals(q, statDate=quarter_para)
            df["datetime"] = quarter_para
            df.rename(columns={"statDate.1" : "statDate1"}, inplace=True)
            df["code"] = df["code"].apply(lambda x: x.replace('.XSHE', '.SZ'))
            df["code"] = df["code"].apply(lambda x: x.replace('.XSHG', '.SH'))

        if df.empty is not True:
            _save2mongodb(myCollection, df)
            print("更新日期:{0}",quarter_para)

        start_dt += delta
コード例 #12
0
 def get_Factor(self, date, factor_name):
     try:
         self.securityData = jqd.get_fundamentals(
             jqd.query(jqd.valuation.code, factor_name).filter(
                 #jqd.valuation.code == self.securityIDCode
                 jqd.valuation.code.in_(self.allSecurityIndex)),
             date)  #2019-01-01'
     except:
         self._add_log(cl.msgInvalidSecurityIDCode)
     return self.securityData
コード例 #13
0
    def record(self, entity, start, end, size, timestamps):
        # different with the default timestamps handling
        param = self.generate_request_param(entity, start, end, size,
                                            timestamps)
        param = sorted(list(set([i[:4] for i in param])))
        q = self.generate_path_fields(entity)
        df = pd.DataFrame()
        for years_val in param:
            rets = pd.concat([
                get_fundamentals(q, statDate=f'{years_val}q' + str(i))
                for i in range(1, 5)
            ])
            df = df.append(rets)

        if df.empty:
            return None
        # 财报时间  公告时间
        df.rename(columns={
            'statDate': "report_date",
            'pubDate': "pub_date",
        },
                  inplace=True)
        df.set_index(['report_date', 'pub_date'], drop=True, inplace=True)
        map_data = {
            value[0]: key
            for key, value in self.get_data_map().items()
        }
        df.rename(columns=map_data, inplace=True)
        df.reset_index(drop=False, inplace=True)

        df['report_date'] = pd.to_datetime(df['report_date'])
        df['report_period'] = df['report_date'].apply(
            lambda x: to_report_period_type(x))
        # df['report_period'] = df['report_date'].apply(lambda x: get_recent_report_date(x))
        df['pub_date'] = pd.to_datetime(df['pub_date'])

        df['timestamp'] = df['report_date']

        df['entity_id'] = entity.id
        df['provider'] = 'joinquant'
        df['code'] = entity.code

        def generate_finance_id(se):
            return "{}_{}".format(
                se['entity_id'],
                to_time_str(se['timestamp'], fmt=TIME_FORMAT_DAY))

        df['id'] = df[['entity_id', 'timestamp']].apply(generate_finance_id,
                                                        axis=1)
        # df = df.drop_duplicates(subset=['id'], keep='last')
        df_to_db(df=df,
                 data_schema=self.data_schema,
                 provider=self.provider,
                 force_update=self.force_update)
        return None
コード例 #14
0
def maintask():
    a=pd.DataFrame()
    j=1
    for i in indexs:
        print('正在获取第%d家,股票代码%s.' % (j, i))
        j+=1
        q = jq.query(jq.valuation).filter(jq.valuation.code == i)
        df = jq.get_fundamentals(q, '2019-05-08')
        a=a.append(df)
        a.to_csv("C:/Users/Administrator/Desktop/估值20190508.csv")
        print(df)
コード例 #15
0
ファイル: main.py プロジェクト: Melon96/wechat
def wechat():
    signature = request.args.get("signature", "")
    timestamp = request.args.get("timestamp", "")
    nonce = request.args.get("nonce", "")
    encrypt_type = request.args.get("encrypt_type", "raw")
    msg_signature = request.args.get("msg_signature", "")
    try:
        check_signature(TOKEN, signature, timestamp, nonce)
    except InvalidSignatureException:
        abort(403)
    if request.method == "GET":
        echo_str = request.args.get("echostr", "")
        return echo_str

    # POST request
    if encrypt_type == "raw":
        # plaintext mode
        msg = parse_message(request.data)
        if msg.type == "text":
            # reply = create_reply(msg.content, msg)
            str0 = msg.content;
            if str0[0] == '6':
                str0 += ".XSHG"
            else:
                str0 += ".XSHE"

            myq = query(jqdatasdk.valuation).filter(jqdatasdk.valuation.code == str0)
            df = jqdatasdk.get_fundamentals(myq, '2020-9-28')
            str1 = df['pe_ratio']
            str2 = df['pb_ratio']
            str4 = '%s ' % str1
            str5 = '%s' % str2
            str6 = str4 + str5
            reply = create_reply(str6, msg)
        else:
            reply = create_reply("Sorry, can not handle this for now", msg)
        return reply.render()
    else:
        # encryption mode
        from wechatpy.crypto import WeChatCrypto

        crypto = WeChatCrypto(TOKEN, AES_KEY, APPID)
        try:
            msg = crypto.decrypt_message(request.data, msg_signature, timestamp, nonce)
        except (InvalidSignatureException, InvalidAppIdException):
            abort(403)
        else:
            msg = parse_message(msg)
            if msg.type == "text":
                reply = create_reply(msg.content, msg)
            else:
                reply = create_reply("Sorry, can not handle this for now", msg)
            return crypto.encrypt_message(reply.render(), nonce, timestamp)
コード例 #16
0
 def get_data_by_date(self, index_code, date):
     stock_codes = jqdatasdk.get_index_stocks(index_code)
     trade_day = jqdatasdk.get_trade_days(end_date=date, count=1)[0]
     q = jqdatasdk.query(jqdatasdk.valuation.code, jqdatasdk.valuation.day,
                         jqdatasdk.valuation.pe_ratio_lyr,
                         jqdatasdk.valuation.pe_ratio,
                         jqdatasdk.valuation.pb_ratio,
                         jqdatasdk.valuation.market_cap,
                         jqdatasdk.valuation.circulating_market_cap).filter(
                             jqdatasdk.valuation.code.in_(stock_codes))
     df = jqdatasdk.get_fundamentals(q, date=trade_day)
     return df
コード例 #17
0
    def get_factor_data1(factor,stock, date):
        if factor in val:
            q = jd.query(jd.valuation).filter(jd.valuation.code.in_(stock))
            df = jd.get_fundamentals(q, date)
        elif factor in bal:
            q = jd.query(jd.balance).filter(jd.balance.code.in_(stock))
            df = jd.get_fundamentals(q, date)
        elif factor in cf:
            q = jd.query(jd.cash_flow).filter(jd.cash_flow.code.in_(stock))
            df = jd.get_fundamentals(q, date)
        elif factor in inc:
            q = jd.query(jd.income).filter(jd.income.code.in_(stock))
            df = jd.get_fundamentals(q, date)
        elif factor in ind:
            q = jd.query(jd.indicator).filter(jd.indicator.code.in_(stock))
            df = jd.get_fundamentals(q, date)

        df.index = df['code']
        data = pd.DataFrame(index = df.index)
        data[date] = df[factor]  #date是函数的参数,转置索引=列名,使得date(时间)成为索引

        return data.T
コード例 #18
0
    def fill_timestamp_with_jq(self, security_item, the_data):
        # get report published date from jq
        try:
            q = query(indicator.pubDate).filter(
                indicator.code == to_jq_entity_id(security_item), )

            df = get_fundamentals(q,
                                  statDate=to_jq_report_period(
                                      the_data.report_date))
            if not df.empty and pd.isna(df).empty:
                the_data.timestamp = to_pd_timestamp(df['pubDate'][0])
                self.session.commit()

        except Exception as e:
            self.logger.error(e)
コード例 #19
0
def get_stock_list(begin_date=None, MARKET_MIN_CAP=100, MARKET_MAX_CAP=500):
    """
    获取从指定日期开始的,市值在指定市值区间的股票列表, 以及详细信息(code,circulating_cap,circulating_market_cap)
    """

    # 总市值在100-500亿
    q = jq.query(jq.valuation.code, jq.valuation.circulating_cap,
                 jq.valuation.circulating_market_cap).filter(
                     jq.valuation.circulating_market_cap < MARKET_MAX_CAP,
                     jq.valuation.circulating_market_cap >= MARKET_MIN_CAP)

    df = jq.get_fundamentals(q, date=begin_date)
    df.index = list(df['code'])

    return df
コード例 #20
0
    def fill_timestamp_with_jq(self, security_item, the_data):
        # get report published date from jq
        q = query(indicator.pubDate).filter(
            indicator.code == to_jq_entity_id(security_item), )

        df = get_fundamentals(q,
                              statDate=to_jq_report_period(
                                  the_data.report_date))
        if not df.empty:
            the_data.timestamp = to_pd_timestamp(df['pubDate'][0])
            self.logger.info(
                'jq fill {} {} timestamp:{} for report_date:{}'.format(
                    self.data_schema, security_item.id, the_data.timestamp,
                    the_data.report_date))
            self.session.commit()
コード例 #21
0
def update_financials(new_start_date, new_end_date, cir_mc, pe, ps):
    # share 是持股数df,换成其他df也行,用来检测股票数量是否相等

    future_trade_days = get_trade_days(start_date=pe.index[-1],
                                       end_date=new_end_date)[1:]  # 第一天重复
    old_trade_days = get_trade_days(start_date=new_start_date,
                                    end_date=pe.index[0])[:-1]  # 最后一天重复
    new_trade_days = list(future_trade_days) + list(old_trade_days)

    if len(new_trade_days) > 0:
        for date in new_trade_days:
            cir_mc.loc[date] = np.nan
            pe.loc[date] = np.nan
            ps.loc[date] = np.nan

        for date in tqdm(new_trade_days):
            df = get_fundamentals(
                query(valuation.code, valuation.circulating_market_cap,
                      valuation.pe_ratio, valuation.ps_ratio).filter(
                          valuation.code.in_(list(pe.columns))),
                date=date)
            cir_mc.loc[date][df['code']] = df['circulating_market_cap'].values
            pe.loc[date][df['code']] = df['pe_ratio'].values
            ps.loc[date][df['code']] = df['ps_ratio'].values
    else:
        print("No need to Update")
    cir_mc.index = pd.to_datetime(cir_mc.index)
    pe.index = pd.to_datetime(pe.index)
    ps.index = pd.to_datetime(ps.index)

    cir_mc = cir_mc.sort_index(axis=0)  # 按index排序
    pe = pe.sort_index(axis=0)  # 按index排序
    ps = ps.sort_index(axis=0)  # 按index排序

    cir_mc = cir_mc.sort_index(axis=1)  # 按股票代码排序
    pe = pe.sort_index(axis=1)  # 按股票代码排序
    ps = ps.sort_index(axis=1)  # 按股票代码排序

    cir_mc = cir_mc.dropna(how='all', axis=0)
    pe = pe.dropna(how='all', axis=0)
    ps = ps.dropna(how='all', axis=0)

    cir_mc.to_csv(
        '/Users/caichaohong/Desktop/Zenki/financials/circulating_market_cap.csv'
    )
    pe.to_csv('/Users/caichaohong/Desktop/Zenki/financials/pe_ratio.csv')
    ps.to_csv('/Users/caichaohong/Desktop/Zenki/financials/ps_ratio.csv')
コード例 #22
0
def get_valuation(sec_code, yyyy_mm_dd):
    k = (sec_code, yyyy_mm_dd)
    if k in valuation_fetched:
        print "    skip fetching valuation %s, %s " % k
        return None

    valuation_fetched[k] = 1
    #print "    fetch valuation of %s, %s" % k

    q = jq.query(jq.valuation).filter(jq.valuation.code == sec_code, )

    # 传入date时, 查询指定日期date所能看到的最近(对市值表来说, 最近一天, 对其他表来说, 最近一个季度)的数据, 我们会查找上市公司在这个日期之前(包括此日期)发布的数据, 不会有未来函数.
    ret = jq.get_fundamentals(q, date=yyyy_mm_dd)
    if ret is None or len(ret) == 0:
        print "WARN: %s 于 %s 的市值数据没查到 " % (sec_code, yyyy_mm_dd)
        return None

    return ret
コード例 #23
0
def get_fundamental(code, Date):
    myq = query(jqdatasdk.valuation).filter(jqdatasdk.valuation.code == code)
    df = jqdatasdk.get_fundamentals(myq, Date)
    strGetPe = '%s ' % df['pe_ratio']
    strGetPb = '%s ' % df['pb_ratio']
    # PE返回字符串处理
    nEnd = strGetPe.index('N')
    strGetPe = strGetPe[1:nEnd]
    strPe = strGetPe.strip()
    # PB返回字符串处理
    nEnd = strGetPb.index('N')
    strGetPb = strGetPb[1:nEnd]
    strPb = strGetPb.strip()

    strPe = "当日市盈率(PE)是:" + strPe + ";  "
    strPb = "当日市净率(PB)是:" + strPb + ";  "
    strReturn = strPe + strPb
    return strReturn
コード例 #24
0
 def get_finance(code=None):
     """
     获取指定财务条件的标的列表
     :return:
     """
     if not (code is None):
         q = query(valuation, indicator).filter(valuation.code == code)
     else:
         q = query(valuation.code, valuation.market_cap,
                   valuation.circulating_market_cap, indicator.roe,
                   indicator.gross_profit_margin).filter(
                       valuation.market_cap > 80,
                       valuation.circulating_market_cap > 50,
                       valuation.turnover_ratio > 0.1,
                       indicator.roe > 0.05).order_by(
                           # 按市值降序排列
                           valuation.market_cap.desc())
     # 取某行,某列的值 market_cap = df.iloc[0]['market_cap']
     return jq.get_fundamentals(q)
コード例 #25
0
def get_valuation(code_list, date):
    # 市盈率TTM、换手率、市净率、市销率TTM、市现率TTM、总股本、总市值、流通股本、流通市值、市盈率
    fields = [
        "pe_ratio", "turnover_ratio", "pb_ratio", "ps_ratio", "pcf_ratio",
        "capitalization", "market_cap", "circulating_cap",
        "circulating_market_cap", "pe_ratio_lyr"
    ]
    table = jq.valuation
    cond = jq.valuation.code.in_(code_list)
    order = jq.valuation.code.asc()
    query = jq.query(table).filter(cond).order_by(order)
    data_df = jq.get_fundamentals(query, date=date)
    if data_df.empty:
        return pd.DataFrame(
            {field: []
             for field in ["security"] + fields + ["date"]})
    # 字段重命名
    result_df = data_df.rename(columns={"code": "security", "day": "date"})
    # 调整字段顺序
    result_df = result_df[["security"] + fields + ["date"]]
    return result_df
コード例 #26
0
    def verfiy_finance(security):
        """
        验证基本面
        :param security:
        :return: bool 验证是否通过
        """
        fund_df = jq.get_fundamentals(
            query(valuation, indicator).filter(valuation.code == security))

        fund_df = fund_df.fillna(value=100)
        if fund_df is None or fund_df.empty:
            flog.FinanceLoger.logger.info("标的{},获取不到财务数据".format(security))
            return False

        # and fund_df.iloc[0]["turnover_ratio"] > 0.01 and fund_df.iloc[0]["roe"] > 0.01 \
        #     and fund_df.iloc[0]["net_profit_margin"] > 5
        if fund_df.iloc[0]["market_cap"] > 80 and fund_df.iloc[0][
                "circulating_market_cap"] > 50:
            return True
        # fund_df.to_csv(security + '.csv')
        return False
コード例 #27
0
def get_income(code_list, date):
    # 净利润、营业利润、利润总额、归属于母公司股东的净利润、营业收入、营业总收入、营业总成本、基本每股收益、稀释每股收益
    fields = [
        "net_profit", "operating_profit", "total_profit",
        "np_parent_company_owners", "operating_revenue",
        "total_operating_revenue", "total_operating_cost", "basic_eps",
        "diluted_eps"
    ]
    table = jq.income
    cond = jq.income.code.in_(code_list)
    order = jq.income.code.asc()
    query = jq.query(table).filter(cond).order_by(order)
    data_df = jq.get_fundamentals(query, date=date)
    if data_df.empty:
        return pd.DataFrame(
            {field: []
             for field in ["security"] + fields + ["date"]})
    # 字段重命名
    result_df = data_df.rename(columns={"code": "security", "day": "date"})
    # 调整字段顺序
    result_df = result_df[["security"] + fields + ["date"]]
    return result_df
コード例 #28
0
def get_annual_value_indicator2(statYYYY):
    q = jq.query(
        jq.indicator.code,
        jq.indicator.statDate,
        jq.balance.total_assets  #总资产(元)
        ,
        jq.balance.good_will  #商誉 (元) 其实可疑的项目还有很多,比如无形资产,应收帐款,在建工程,库存 ...
        ,
        jq.balance.total_current_assets  #流动资产(元)
        ,
        jq.balance.total_liability  #总负债(元)
        ,
        jq.balance.total_current_liability  #流动负债(元)
        ,
        jq.cash_flow.net_operate_cash_flow  # 经营活动产生的现金流量净额(元) 
        ,
        jq.cash_flow.net_invest_cash_flow  # 投资活动产生的现金流量净额(元)
        ,
        jq.cash_flow.cash_equivalent_increase  # 现金及现金等价物净增加额(元)
        ,
        jq.income.net_profit  #净利润(元)
        ,
        jq.income.np_parent_company_owners  # 归属于母公司股东的净利润(元)
        ,
        jq.income.basic_eps  #基本每股收益(元)
        ,
        jq.indicator.adjusted_profit  # 扣除非经常损益后的净利润(元)
        ,
        jq.indicator.gross_profit_margin  #销售毛利率(%)
    ).filter(jq.indicator.code == jq.balance.code,
             jq.indicator.code == jq.cash_flow.code,
             jq.indicator.code == jq.income.code).order_by(jq.indicator.code)

    ret = jq.get_fundamentals(q, statDate=statYYYY)

    if ret is None or len(ret) == 0:
        print "WARN:  %s年的基本面数据没查到 " % statYYYY
    return ret
コード例 #29
0
ファイル: 数据更新.py プロジェクト: fswzb/CJSJ
    for s in range(len(insert_list)):
        sql = "INSERT INTO %s (date,open,close,high,low,cjl) VALUES ( '%s', %.2f ,%.2f ,%.2f ,%.2f,%.2f  )"
        date = datetime.date(
            datetime.fromtimestamp(insert_list[s][0].timestamp()))
        data = ('TB' + dm_insert_list[q][0], date, insert_list[s][1],
                insert_list[s][2], insert_list[s][3], insert_list[s][4],
                insert_list[s][5])
        cursor.execute(sql % data)
        connect.commit()
    print('TB' + dm_insert_sh_list[q][:6], '收盘价数据获取完成')

    #获取市值
    for u in range(len(date_new_list)):
        df_volandincome = jq.get_fundamentals(jq.query(
            jq.valuation.code, jq.valuation.circulating_market_cap,
            jq.valuation.pe_ratio, jq.income.total_operating_revenue,
            jq.income.np_parent_company_owners).filter(
                jq.valuation.code == dm_insert_sh_list[q]),
                                              date=date_new_list[u])
        volandincome_list = df_volandincome.values.tolist()
        sql = "update %s set dm='%s' , ltsz=%.2f ,  syl=%.2f  ,  ys=%.2f  ,  jlr=%.2f  where date='%s'"
        try:
            data = ('TB' + volandincome_list[0][0][:6],
                    volandincome_list[0][0][:6], volandincome_list[0][1],
                    volandincome_list[0][2], volandincome_list[0][3],
                    volandincome_list[0][4], date_new_list[u])
            cursor.execute(sql % data)
        except Exception as e:
            connect.rollback()  # 事务回滚
            continue
        else:
            connect.commit()  # 事务提交
コード例 #30
0
    '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019',
    '2020'
]

rev = pd.DataFrame(index=stock_list, columns=years)
rev_growth = pd.DataFrame(index=stock_list, columns=years)
np = pd.DataFrame(index=stock_list, columns=years)
np_growth = pd.DataFrame(index=stock_list, columns=years)
pe = pd.DataFrame(index=stock_list, columns=years)

for i in tqdm(range(len(stock_list))):
    ret = [
        get_fundamentals(query(
            indicator.statDate, income.np_parent_company_owners,
            income.total_operating_revenue,
            indicator.inc_total_revenue_year_on_year,
            indicator.inc_net_profit_to_shareholders_year_on_year,
            valuation.pe_ratio).filter(income.code == stock_list[i]),
                         statDate=y) for y in years
    ]
    temp = pd.DataFrame()
    for rr in ret:
        temp = pd.concat([temp, rr], join='outer')
    temp.index = [x.split('-')[0] for x in temp['statDate']]
    rev.loc[stock_list[i]][
        temp.index] = temp['total_operating_revenue'].values * 10**(-8)
    rev_growth.loc[stock_list[i]][
        temp.index] = temp['inc_total_revenue_year_on_year'].values
    np.loc[stock_list[i]][
        temp.index] = temp['np_parent_company_owners'].values * 10**(-8)
    np_growth.loc[stock_list[i]][temp.index] = temp[