import matplotlib.pyplot as plt from mne.decoding import GeneralizationAcrossTime from mne.epochs import concatenate_epochs from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from jr.utils import OnlineReport from jr.gat import force_predict, scorer_auc from base import eeglab2mne report = OnlineReport() ############################################################################## # Load data data_path = '/media/jrking/harddrive/Simon' all_scores = dict(HL=list(), EU=list(), PR=list()) for subject in range(1, 33): file_name = op.join(data_path, 's%i.mat' % subject) ####################################################################### # Preprocessing to speed it up epochs = eeglab2mne(file_name) np.random.RandomState(1) order = np.arange(len(epochs)) np.random.shuffle(order)
""" Plot decoding results """ import numpy as np import itertools import os.path as op import pickle import matplotlib.pyplot as plt from jr.utils import OnlineReport from jr.plot import pretty_gat, pretty_decod, pretty_slices data_path = '/media/jrking/harddrive/Simon' report = OnlineReport() # gather subjects scores contrasts = ['HL', 'EU', 'PR'] all_scores = dict(HL=list(), EU=list(), PR=list(), EU_H=list(), PR_H=list(), EU_L=list(), PR_L=list()) for subject, contrast in itertools.product(range(1, 33), contrasts): fname = op.join(data_path, 's%i_%s_scores.npy' % (subject, contrast)) scores = np.load(fname) all_scores[contrast].append(scores) # gather subscores for subject, HL, contrast in itertools.product( range(1, 33), [0, 1], ['EU', 'PR']): subcontrast = '%s_%s' % (contrast, 'HL'[HL]) fname = op.join(data_path, 's%i_%s_scores.npy' % (subject, subcontrast)) scores = np.load(fname) all_scores[subcontrast].append(scores)