コード例 #1
0
def run_upsample(json_file_path, fmt_file_path):
    json_manager = JsonManager(json_file_path)

    if json_manager.get_upsample_status() == True:
        print(f"Upsampling started using {json_file_path} and {fmt_file_path}")
        upsampled_path = json_manager.get_upsampled_path()
        constants.remove_folder_if_exists(\
         constants.UPSAMPLED_CSV_FOLDER_NAME, upsampled_path)

        hot_encoded_folder = os.fsdecode(os.path.join(\
         json_manager.get_hot_encoded_path(), \
         constants.HOT_ENCODED_CSV_FOLDER_NAME))

        hot_encoded_file = os.fsdecode(os.path.join(\
         hot_encoded_folder, \
         constants.HOT_ENCODED_CSV_FILENAME))

        hotEncoded_data = pd.read_csv(hot_encoded_file)
        features_data = pd.read_csv(hot_encoded_file, \
        usecols = list(hotEncoded_data.columns)[:-1]) # everything except label
        labels_data = pd.read_csv(hot_encoded_file, \
        usecols = [list(hotEncoded_data.columns)[-1]]) # label

        sm = SVMSMOTE(random_state=json_manager.get_random_state())
        X_res, y_res = sm.fit_resample(features_data, labels_data)
        csv_ready = np.append(X_res, y_res, axis=constants.COLUMN_AXIS)

        upsampled_folder = constants.add_folder_to_directory(\
         constants.UPSAMPLED_CSV_FOLDER_NAME, upsampled_path)

        upsampled_file_path = os.fsdecode(os.path.join(\
         upsampled_folder, constants.UPSAMPLED_CSV_FILENAME))

        if os.path.exists(upsampled_file_path):
            os.remove(upsampled_file_path)

        f = open(fmt_file_path, "r")
        fmt = f.readline()
        f.close()

        header = ','.join(str(i) for i in hotEncoded_data.columns)
        np.savetxt(upsampled_file_path, csv_ready, \
         fmt = fmt, \
         delimiter = constants.CSV_DELIMITER, \
         header = header, \
         comments='')
        print(f"Upsampling finished, results in {upsampled_file_path}")
コード例 #2
0
class Runner:
    """Main runner class for this file
	
	Attributes:
	    json_manager (json_manager.JsonManager): JSON Manager for config.json
	    log_file (_io.TextIOWrapper): Log file used for formatting
	"""
    def __init__(self, json_file_path, log_file_path):
        """Summary
		
		Args:
		    json_file_path (str): Full filepath to config.json
		    log_file_path (str): Full filepath to output.log file 
		"""
        print(
            f"BehaviorTree building started using {json_file_path} and {log_file_path}"
        )
        self.json_manager = JsonManager(json_file_path)
        self.log_file = open(log_file_path, "r")

    def get_file_fmt_and_label_encoding(self):
        """Summary
		
		Returns:
		    tuple(str, list<str>): Tuple containg string output file format and list of label encodings
		"""
        fmt = self.log_file.readline()
        label_encoding = eval(self.log_file.readline())
        self.log_file.close()
        return fmt, label_encoding

    def get_supervised_data_csv_filepath(self):
        """Returns filepath of data, uses one hot encoded if upsample = false in config.json
		
		Returns:
		    string: filepath to data csv
		"""
        data_folder = os.fsdecode(os.path.join(\
          self.json_manager.get_hot_encoded_path(), constants.HOT_ENCODED_CSV_FOLDER_NAME))
        filename = constants.HOT_ENCODED_CSV_FILENAME

        if self.json_manager.get_upsample_status():
            data_folder = os.fsdecode(os.path.join(\
             self.json_manager.get_upsampled_path(), constants.UPSAMPLED_CSV_FOLDER_NAME))
            filename = constants.UPSAMPLED_CSV_FILENAME

        return os.fsdecode(os.path.join(\
          data_folder, filename))

    def get_output_folder(self, kFold, max_depth):
        path = constants.combine_folder_and_working_dir(
            constants.PIPELINE_OUTPUT_FOLDER_NAME,
            self.json_manager.get_output_path())
        return constants.combine_folder_and_working_dir(
            "{}_kFold_{}_maxDepth".format(kFold, max_depth), path)

    def create_output_folder(self, kFold, max_depth):
        output_folder = constants.add_folder_to_directory(\
         constants.PIPELINE_OUTPUT_FOLDER_NAME, self.json_manager.get_output_path())
        folder_name = "{}_kFold_{}_maxDepth".format(kFold, max_depth)
        return constants.add_folder_to_directory(folder_name, output_folder)

    def format_float_list_to_precision(self, list_in, precision):
        prec_str = "{0:0." + str(precision) + "f}"
        return [prec_str.format(i) for i in list_in]

    def k_fold_train_decision_tree_w_max_depth(self, num_k_folds, max_depth,
                                               output_full_path):

        kf = KFold(shuffle=True, n_splits=num_k_folds)
        # build full tree on all data
        full_tree = tree.DecisionTreeClassifier(random_state = self.json_manager.get_random_state(), \
          max_depth = max_depth).fit(self.features_data, self.labels_data)

        # get set of alphas from cost_complexity_pruning
        prune_path = full_tree.cost_complexity_pruning_path(
            self.features_data, self.labels_data)
        ccp_alphas, impurities = prune_path.ccp_alphas, prune_path.impurities

        self.train_scores = [0] * len(ccp_alphas)
        self.test_scores = [0] * len(ccp_alphas)

        # split data into train/test
        for train_index, test_index in kf.split(self.features_data):
            X_train, X_test = self.features_data.iloc[
                train_index], self.features_data.iloc[test_index]
            y_train, y_test = self.labels_data.iloc[
                train_index], self.labels_data.iloc[test_index]

            # create tree on each alpha
            for i, alpha in enumerate(ccp_alphas):
                clf = tree.DecisionTreeClassifier(\
                 random_state = self.json_manager.get_random_state(), \
                 max_depth = max_depth, \
                 ccp_alpha=alpha)
                clf = clf.fit(X_train, y_train)
                self.train_scores[i] += clf.score(X_train,
                                                  y_train) / num_k_folds
                self.test_scores[i] += clf.score(X_test, y_test) / num_k_folds

    def generate_full_binary_set(self):
        bin_set = self.json_manager.get_binary_features()
        # categrorical
        cat_set = self.json_manager.get_categorical_features()

        # LAT

    def run(self):
        """Reads in data, trains, and reports results
		"""
        kFold = self.json_manager.get_kfold()
        max_depth = self.json_manager.get_decision_tree_depth()

        constants.remove_folder_if_exists(
            self.get_output_folder(kFold, max_depth))

        fmt, label_encoding = self.get_file_fmt_and_label_encoding()

        self.supervised_learning_dataframe = pd.read_csv(
            self.get_supervised_data_csv_filepath())
        self.features_data = self.supervised_learning_dataframe.loc[:, self.
                                                                    supervised_learning_dataframe
                                                                    .columns !=
                                                                    constants.
                                                                    LABEL_COLUMN_NAME]
        self.labels_data = self.supervised_learning_dataframe.loc[:, self.
                                                                  supervised_learning_dataframe
                                                                  .columns ==
                                                                  constants.
                                                                  LABEL_COLUMN_NAME]

        output_full_path = self.create_output_folder(kFold, max_depth)
        self.k_fold_train_decision_tree_w_max_depth(kFold, max_depth,
                                                    output_full_path)

        report_file = "{}_kFold_{}_maxDepth.txt".format(kFold, max_depth)
        dot_pdf_header = "{}_kFold_{}_maxDepth".format(kFold, max_depth)

        report_file_path = os.path.join(output_full_path, report_file)
        report_file_obj = open(report_file_path, "w")
        report_file_obj.write("Decision Tree with max_depth: {}, and kFold: {}\n".format(\
         max_depth, kFold))
        # report_file_obj.write("	Average train error with {} fold: {}\n".format(\
        # 	kFold, sum(self.train_scores)/len(self.train_accu)))
        # report_file_obj.write("	Average test error with {} fold: {}\n".format(\
        # 	kFold, sum(self.test_accu)/len(self.test_accu)))
        report_file_obj.write(
            "	Decision Tree (DOT format) saved to: {}\n".format(
                dot_pdf_header))
        report_file_obj.write(
            "	Decision Tree (PDF format) saved to: {}.pdf\n".format(
                dot_pdf_header))
        report_file_obj.write("Check {} for appropriate pruning.\n\n\n".format(
            PRUNING_GRAPH_FILENAME))

        clf = tree.DecisionTreeClassifier(random_state = self.json_manager.get_random_state(), \
         max_depth = max_depth)
        clf = clf.fit(self.features_data, self.labels_data)
        dot_pdf_full_path = os.fsdecode(
            os.path.join(output_full_path, dot_pdf_header))
        plot_decision_tree(clf, dot_pdf_full_path, self.features_data.columns)

        prune_path = clf.cost_complexity_pruning_path(self.features_data,
                                                      self.labels_data)
        ccp_alphas, impurities = prune_path.ccp_alphas, prune_path.impurities


        pruning_folder = constants.add_folder_to_directory(\
         constants.PRUNE_FOLDER_NAME, output_full_path)

        clfs = []
        train_scores = []
        for i, ccp_alpha in enumerate(ccp_alphas):
            clf = tree.DecisionTreeClassifier(random_state = self.json_manager.get_random_state(), \
             max_depth = max_depth, ccp_alpha=ccp_alpha)
            clf.fit(self.features_data, self.labels_data)
            score = clf.score(self.features_data, self.labels_data)

            clfs.append(clf)
            train_scores.append(score)

            newPrunePath = constants.add_folder_to_directory(
                "Pruning_{0}_{1:.6g}".format(i, ccp_alpha), pruning_folder)
            decision_tree_path = os.fsdecode(os.path.join(\
             newPrunePath, "{0}_kFold_{1}_maxDepth_{2}_{3:.6g}_prune".format(kFold, max_depth,i, ccp_alpha)))
            plot_decision_tree(clf, decision_tree_path,
                               self.features_data.columns)

            decision_tree_obj = clf.tree_

            # theoretical split to dump decision trees out to files
            # TODO: should we include categorical features as binary?
            full_binary_set = self.generate_full_binary_set()
            behavior_tree_obj = btBuilder.bt_espresso_mod(\
             decision_tree_obj,
             self.features_data.columns,
             label_encoding,
             self.json_manager.get_binary_features())

            behaviot_tree_full_path = os.fsdecode(os.path.join(\
             newPrunePath, constants.BEHAVIOR_TREE_XML_FILENAME))

            # btBuilder.save_tree(behavior_tree_obj, behaviot_tree_full_path)
            btBuilder.save_tree(behavior_tree_obj, newPrunePath)

            report_file_obj.write("prune: {} \n".format(i))
            report_file_obj.write("	ccp_alpha: {}, train score: {}\n".format(
                ccp_alpha, train_scores[i]))
            report_file_obj.write(
                "	Decision Tree saved to {}\n".format(decision_tree_path))
            report_file_obj.write("	Behavior Tree saved to {}\n\n".format(
                behaviot_tree_full_path))
            report_file_obj.write("")

        fig, ax = plt.subplots()
        ax.set_xlabel("alpha")
        ax.set_ylabel("accuracy")
        ax.set_title(
            "Accuracy vs alpha for Final Tree Prunes (note: uses all data for final training)"
        )
        ax.plot(ccp_alphas,
                self.train_scores,
                marker='o',
                label="train",
                drawstyle="steps-post")
        ax.plot(ccp_alphas,
                self.test_scores,
                marker='x',
                label="test",
                drawstyle="steps-post")
        ax.legend()
        graph_path = os.fsdecode(
            os.path.join(output_full_path, PRUNING_GRAPH_FILENAME))
        plt.savefig(graph_path)

        results_txt_file = open(
            os.fsdecode(os.path.join(output_full_path, RESULTS_TEXT_FILENAME)),
            "w")
        alist = ccp_alphas.flatten().tolist()
        acc_diffs = [
            a_i - b_i for a_i, b_i in zip(self.train_scores, self.test_scores)
        ]
        float_precision = 6
        results_txt_file.write(
            f"alphas:\t\t{self.format_float_list_to_precision(alist, float_precision)}\n"
        )
        results_txt_file.write(
            f"train acc:\t{self.format_float_list_to_precision(self.train_scores, float_precision)}\n"
        )
        results_txt_file.write(
            f"test acc:\t{self.format_float_list_to_precision(self.test_scores, float_precision)}\n"
        )
        results_txt_file.write(
            f"acc diff:\t{self.format_float_list_to_precision(acc_diffs, float_precision)}\n"
        )
        results_txt_file.close()

        report_file_obj.close()
        print(f"BehaviorTree buidling finished, results in {output_full_path}")
コード例 #3
0
def main():
	json_file_path, log_file_path = process_command_line_args()
	json_manager = JsonManager(json_file_path)

	log_file = open(log_file_path, "r")
	fmt = log_file.readline()
	label_encoding = eval(log_file.readline())
	log_file.close()

	supervised_learning_data = None
	if json_manager.get_upsample_status() == True:
		upsampled_folder = os.fsdecode(os.path.join(\
			json_manager.get_upsampled_path(), constants.UPSAMPLED_CSV_FOLDER_NAME))

		supervised_learning_data = os.fsdecode(os.path.join(\
			upsampled_folder, constants.UPSAMPLED_CSV_FILENAME))
	else:
		hot_encoded_folder = os.fsdecode(os.path.join(\
			json_manager.get_hot_encoded_path(), constants.HOT_ENCODED_CSV_FOLDER_NAME))
		supervised_learning_data = os.fsdecode(os.path.join(\
			hot_encoded_folder, constants.HOT_ENCODED_CSV_FILENAME))

	supervised_learning_dataframe = pd.read_csv(supervised_learning_data)
	features_data = pd.read_csv(supervised_learning_data, \
		usecols = list(supervised_learning_dataframe.columns)[:-1])
	labels_data = pd.read_csv(supervised_learning_data, \
		usecols = [list(supervised_learning_dataframe.columns)[-1]])

	kFold = json_manager.get_kfold()
	max_depth = json_manager.get_decision_tree_depth()
	output_folder = constants.add_folder_to_directory(\
		constants.OUTPUT_FOLDER_NAME, json_manager.get_output_path())
	folder_name = "{}_kFold_{}_maxDepth".format(kFold, max_depth)
	output_full_path = constants.add_folder_to_directory(folder_name, output_folder)

	clfs = []
	trains_accu = []
	test_accu = []
	# for j in range(4):
	kf = KFold(shuffle = True, n_splits = kFold)
	for train_index, test_index in kf.split(features_data):
		X_train, X_test = features_data.iloc[train_index], features_data.iloc[test_index]
		y_train, y_test = labels_data.iloc[train_index], labels_data.iloc[test_index]

		clf = tree.DecisionTreeClassifier(random_state = json_manager.get_random_state(), \
			max_depth = max_depth)
		clf = clf.fit(X_train, y_train)

		trains_accu.append(clf.score(X_train, y_train))
		test_accu.append(clf.score(X_test, y_test))
		clfs.append(clf)

	report_file = "{}_kFold_{}_maxDepth.txt".format(kFold, max_depth)
	dot_pdf_header = "{}_kFold_{}_maxDepth".format(kFold, max_depth)

	report_file_path = os.path.join(output_full_path, report_file)
	# if os.path.exists(decisionTreeFile_path): 
	# 	os.remove(decisionTreeFile_path)

	report_file_obj = open(report_file_path, "w")
	report_file_obj.write("Decision Tree with max_depth: {}, and kFold: {}\n".format(\
		max_depth, kFold))
	report_file_obj.write("	Average train error with {} fold: {}\n".format(\
		kFold, sum(trains_accu)/len(trains_accu)))
	report_file_obj.write("	Average test error with {} fold: {}\n".format(\
		kFold, sum(test_accu)/len(test_accu)))
	report_file_obj.write("	Decision Tree (DOT format) saved to: {}\n".format(dot_pdf_header))
	report_file_obj.write("	Decision Tree (PDF format) saved to: {}.pdf\n".format(dot_pdf_header))
	report_file_obj.write("Check {} for appropriate pruning.\n\n\n".format(PRUNING_GRAPH_FILENAME))

	clf = tree.DecisionTreeClassifier(random_state = json_manager.get_random_state(), \
		max_depth = max_depth)
	clf = clf.fit(features_data, labels_data)
	dot_pdf_full_path = os.fsdecode(os.path.join(output_full_path, dot_pdf_header))
	plot_decision_tree(clf, dot_pdf_full_path, features_data.columns)

	prune_path = clf.cost_complexity_pruning_path(features_data, labels_data)
	ccp_alphas, impurities = prune_path.ccp_alphas, prune_path.impurities


	pruning_folder = constants.add_folder_to_directory(\
		constants.PRUNE_FOLDER_NAME, output_full_path)

	clfs = []
	train_scores = []
	for i, ccp_alpha in enumerate(ccp_alphas):
		clf = tree.DecisionTreeClassifier(random_state = json_manager.get_random_state(), \
			max_depth = max_depth, ccp_alpha=ccp_alpha)
		clf.fit(features_data, labels_data)
		score = clf.score(features_data, labels_data)

		clfs.append(clf)
		train_scores.append(score)

		newPrunePath = constants.add_folder_to_directory("Pruning_{}".format(i), pruning_folder)
		decision_tree_path = os.fsdecode(os.path.join(\
			newPrunePath, "{}_kFold_{}_maxDepth_{}_prune".format(kFold, max_depth, i)))
		plot_decision_tree(clf, decision_tree_path, features_data.columns)

		decision_tree_obj = clf.tree_
		behavior_tree_obj = btBuilder.bt_espresso_mod(\
			decision_tree_obj, features_data.columns, label_encoding)

		behaviot_tree_full_path = os.fsdecode(os.path.join(\
			newPrunePath, constants.BEHAVIOR_TREE_XML_FILENAME))

		# btBuilder.save_tree(behavior_tree_obj, behaviot_tree_full_path)
		btBuilder.save_tree(behavior_tree_obj, newPrunePath)

		report_file_obj.write("prune: {} \n".format(i))
		report_file_obj.write("	ccp_alpha: {}, train score: {}\n".format(ccp_alpha, train_scores[i]))
		report_file_obj.write("	Decision Tree saved to {}\n".format(decision_tree_path))
		report_file_obj.write("	Behavior Tree saved to {}\n\n".format(behaviot_tree_full_path))
		report_file_obj.write("")

	fig, ax = plt.subplots()
	ax.set_xlabel("alpha")
	ax.set_ylabel("accuracy")
	ax.set_title("Accuracy vs alpha for training sets")
	ax.plot(ccp_alphas, train_scores, marker='o', label="train", drawstyle="steps-post")
	ax.legend()
	graph_path = os.fsdecode(os.path.join(output_full_path, PRUNING_GRAPH_FILENAME))
	plt.savefig(graph_path)

	report_file_obj.close()