def _flatten_dict_obj(self, obj, data=None): """Recursively call flatten() and return json-friendly dict """ if data is None: data = obj.__class__() flatten = self._flatten_key_value_pair for k, v in sorted(obj.items(), key=util.itemgetter): flatten(k, v, data) # the collections.defaultdict protocol if hasattr(obj, 'default_factory') and callable(obj.default_factory): factory = obj.default_factory if util.is_type(factory): # Reference the class/type value = _mktyperef(factory) else: # The factory is not a type and could reference e.g. functions # or even the object instance itself, which creates a cycle. if self._mkref(factory): # We've never seen this object before so pickle it in-place. # Create an instance from the factory and assume that the # resulting instance is a suitable examplar. value = self._flatten(handlers.CloneFactory(factory())) else: # We've seen this object before. # Break the cycle by emitting a reference. value = self._getref(factory) data['default_factory'] = value return data
def register(self, cls, handler=None, base=False): """Register the a custom handler for a class :param cls: The custom object class to handle :param handler: The custom handler class (if None, a decorator wrapper is returned) :param base: Indicates whether the handler should be registered for all subclasses This function can be also used as a decorator by omitting the `handler` argument: @jsonpickle.handlers.register(Foo, base=True) class FooHandler(jsonpickle.handlers.BaseHandler): pass """ if handler is None: def _register(handler_cls): self.register(cls, handler=handler_cls, base=base) return handler_cls return _register if not util.is_type(cls): raise TypeError('{0!r} is not a class/type'.format(cls)) # store both the name and the actual type for the ugly cases like # _sre.SRE_Pattern that cannot be loaded back directly self._handlers[util.importable_name(cls)] = self._handlers[cls] = handler if base: # only store the actual type for subclass checking self._base_handlers[cls] = handler
def get(self, cls_or_name, default=None): """ :param cls_or_name: the type or its fully qualified name :param default: default value, if a matching handler is not found Looks up a handler by type reference or its fully qualified name. If a direct match is not found, the search is performed over all handlers registered with base=True. """ handler = self._handlers.get(cls_or_name) if handler is None and util.is_type(cls_or_name): # attempt to find a base class for cls, base_handler in self._base_handlers.items(): if issubclass(cls_or_name, cls): return base_handler return default if handler is None else handler
def _get_flattener(self, obj): if PY2 and isinstance(obj, file): return self._flatten_file if util.is_primitive(obj): return lambda obj: obj if util.is_bytes(obj): return self._flatten_bytestring list_recurse = self._list_recurse if util.is_list(obj): if self._mkref(obj): return list_recurse else: self._push() return self._getref # We handle tuples and sets by encoding them in a "(tuple|set)dict" if util.is_tuple(obj): if not self.unpicklable: return list_recurse return lambda obj: {tags.TUPLE: [self._flatten(v) for v in obj]} if util.is_set(obj): if not self.unpicklable: return list_recurse return lambda obj: {tags.SET: [self._flatten(v) for v in obj]} if util.is_dictionary(obj): return self._flatten_dict_obj if util.is_type(obj): return _mktyperef if util.is_object(obj): return self._ref_obj_instance if util.is_module_function(obj): return self._flatten_function # instance methods, lambdas, old style classes... self._pickle_warning(obj) return None
def _flatten_dict_obj(self, obj, data=None): """Recursively call flatten() and return json-friendly dict """ if data is None: data = obj.__class__() flatten = self._flatten_key_value_pair for k, v in sorted(obj.items(), key=util.itemgetter): flatten(k, v, data) # the collections.defaultdict protocol if hasattr(obj, "default_factory") and callable(obj.default_factory): factory = obj.default_factory if util.is_type(factory): # Reference the type value = _mktyperef(factory) else: # Create an instance from the factory and assume that the # resulting instance is a suitable examplar. value = self._flatten(handlers.CloneFactory(factory())) data["default_factory"] = value return data
def _get_flattener(self, obj): if util.is_primitive(obj): return lambda obj: obj list_recurse = self._list_recurse if util.is_list(obj): if self._mkref(obj): return list_recurse else: self._push() return self._getref # We handle tuples and sets by encoding them in a "(tuple|set)dict" if util.is_tuple(obj): if not self.unpicklable: return list_recurse return lambda obj: {tags.TUPLE: [self._flatten(v) for v in obj]} if util.is_set(obj): if not self.unpicklable: return list_recurse return lambda obj: {tags.SET: [self._flatten(v) for v in obj]} if util.is_dictionary(obj): return self._flatten_dict_obj if util.is_type(obj): return _mktyperef if util.is_object(obj): return self._ref_obj_instance # else, what else? (methods, functions, old style classes...) return None
def flatten(self, obj): """Takes an object and returns a JSON-safe representation of it. Simply returns any of the basic builtin datatypes >>> p = Pickler() >>> p.flatten('hello world') 'hello world' >>> p.flatten(u'hello world') u'hello world' >>> p.flatten(49) 49 >>> p.flatten(350.0) 350.0 >>> p.flatten(True) True >>> p.flatten(False) False >>> r = p.flatten(None) >>> r is None True >>> p.flatten(False) False >>> p.flatten([1, 2, 3, 4]) [1, 2, 3, 4] >>> p.flatten((1,2,))[tags.TUPLE] [1, 2] >>> p.flatten({'key': 'value'}) {'key': 'value'} """ self._push() if self._depth == self._max_depth: return self._pop(repr(obj)) if util.is_primitive(obj): return self._pop(obj) if util.is_list(obj): return self._pop([ self.flatten(v) for v in obj ]) # We handle tuples and sets by encoding them in a "(tuple|set)dict" if util.is_tuple(obj): return self._pop({tags.TUPLE: [ self.flatten(v) for v in obj ]}) if util.is_set(obj): return self._pop({tags.SET: [ self.flatten(v) for v in obj ]}) if util.is_dictionary(obj): return self._pop(self._flatten_dict_obj(obj, obj.__class__())) if util.is_type(obj): return self._pop(_mktyperef(obj)) if util.is_object(obj): if self._mkref(obj): # We've never seen this object so return its # json representation. return self._pop(self._flatten_obj_instance(obj)) else: # We've seen this object before so place an object # reference tag in the data. This avoids infinite recursion # when processing cyclical objects. return self._pop(self._getref(obj)) return self._pop(data)
def flatten(self, obj): """Takes an object and returns a JSON-safe representation of it. Simply returns any of the basic builtin datatypes >>> p = Pickler() >>> p.flatten('hello world') 'hello world' >>> p.flatten(u'hello world') u'hello world' >>> p.flatten(49) 49 >>> p.flatten(350.0) 350.0 >>> p.flatten(True) True >>> p.flatten(False) False >>> r = p.flatten(None) >>> r is None True >>> p.flatten(False) False >>> p.flatten([1, 2, 3, 4]) [1, 2, 3, 4] >>> p.flatten((1,2,))[tags.TUPLE] [1, 2] >>> p.flatten({'key': 'value'}) {'key': 'value'} """ self._push() if self._depth == self._max_depth: return self._pop(repr(obj)) if util.is_primitive(obj): return self._pop(obj) if util.is_list(obj): return self._pop([self.flatten(v) for v in obj]) # We handle tuples and sets by encoding them in a "(tuple|set)dict" if util.is_tuple(obj): return self._pop({tags.TUPLE: [self.flatten(v) for v in obj]}) if util.is_set(obj): return self._pop({tags.SET: [self.flatten(v) for v in obj]}) if util.is_dictionary(obj): return self._pop(self._flatten_dict_obj(obj, obj.__class__())) if util.is_type(obj): return self._pop(_mktyperef(obj)) if util.is_object(obj): data = {} has_class = hasattr(obj, '__class__') has_dict = hasattr(obj, '__dict__') if self._mkref(obj): if has_class and not util.is_repr(obj): module, name = _getclassdetail(obj) if self.unpicklable is True: data[tags.OBJECT] = '%s.%s' % (module, name) if util.is_repr(obj): if self.unpicklable is True: data[tags.REPR] = '%s/%s' % (obj.__class__.__module__, repr(obj)) else: data = unicode(obj) return self._pop(data) if util.is_dictionary_subclass(obj): return self._pop(self._flatten_dict_obj(obj, data)) if util.is_noncomplex(obj): return self._pop([self.flatten(v) for v in obj]) if has_dict: return self._pop(self._flatten_dict_obj( obj.__dict__, data)) else: # We've seen this object before so place an object # reference tag in the data. This avoids infinite recursion # when processing cyclical objects. return self._pop(self._getref(obj)) return self._pop(data)
def flatten(self, obj): """Takes an object and returns a JSON-safe representation of it. Simply returns any of the basic builtin datatypes >>> p = Pickler() >>> p.flatten('hello world') 'hello world' >>> p.flatten(u'hello world') u'hello world' >>> p.flatten(49) 49 >>> p.flatten(350.0) 350.0 >>> p.flatten(True) True >>> p.flatten(False) False >>> r = p.flatten(None) >>> r is None True >>> p.flatten(False) False >>> p.flatten([1, 2, 3, 4]) [1, 2, 3, 4] >>> p.flatten((1,2,))[tags.TUPLE] [1, 2] >>> p.flatten({'key': 'value'}) {'key': 'value'} """ self._push() if self._depth == self._max_depth: return self._pop(repr(obj)) if util.is_primitive(obj): return self._pop(obj) if util.is_list(obj): return self._pop([ self.flatten(v) for v in obj ]) # We handle tuples and sets by encoding them in a "(tuple|set)dict" if util.is_tuple(obj): return self._pop({tags.TUPLE: [ self.flatten(v) for v in obj ]}) if util.is_set(obj): return self._pop({tags.SET: [ self.flatten(v) for v in obj ]}) if util.is_dictionary(obj): return self._pop(self._flatten_dict_obj(obj, obj.__class__())) if util.is_type(obj): return self._pop(_mktyperef(obj)) if util.is_object(obj): data = {} has_class = hasattr(obj, '__class__') has_dict = hasattr(obj, '__dict__') if self._mkref(obj): if has_class and not util.is_repr(obj): module, name = _getclassdetail(obj) if self.unpicklable is True: data[tags.OBJECT] = '%s.%s' % (module, name) if util.is_repr(obj): if self.unpicklable is True: data[tags.REPR] = '%s/%s' % (obj.__class__.__module__, repr(obj)) else: data = unicode(obj) return self._pop(data) if util.is_dictionary_subclass(obj): return self._pop(self._flatten_dict_obj(obj, data)) if util.is_noncomplex(obj): return self._pop([self.flatten(v) for v in obj]) if has_dict: return self._pop(self._flatten_dict_obj(obj.__dict__, data)) else: # We've seen this object before so place an object # reference tag in the data. This avoids infinite recursion # when processing cyclical objects. return self._pop(self._getref(obj)) return self._pop(data)
def flatten(self, obj): """Takes an object and returns a JSON-safe representation of it. Simply returns any of the basic builtin datatypes >>> p = Pickler() >>> p.flatten('hello world') 'hello world' >>> p.flatten(u'hello world') u'hello world' >>> p.flatten(49) 49 >>> p.flatten(350.0) 350.0 >>> p.flatten(True) True >>> p.flatten(False) False >>> r = p.flatten(None) >>> r is None True >>> p.flatten(False) False >>> p.flatten([1, 2, 3, 4]) [1, 2, 3, 4] >>> p.flatten((1,2,))[tags.TUPLE] [1, 2] >>> p.flatten({'key': 'value'}) {'key': 'value'} """ self._push() if self._depth == self._max_depth: return self._pop(repr(obj)) if util.is_primitive(obj): return self._pop(obj) if util.is_list(obj): return self._pop([self.flatten(v) for v in obj]) # We handle tuples and sets by encoding them in a "(tuple|set)dict" if util.is_tuple(obj): if self.unpicklable is True: return self._pop({tags.TUPLE: [self.flatten(v) for v in obj]}) else: return self._pop([self.flatten(v) for v in obj]) if util.is_set(obj): if self.unpicklable is True: return self._pop({tags.SET: [self.flatten(v) for v in obj]}) else: return self._pop([self.flatten(v) for v in obj]) if util.is_dictionary(obj): return self._pop(self._flatten_dict_obj(obj, obj.__class__())) if util.is_type(obj): return self._pop(_mktyperef(obj)) if util.is_object(obj): if self._mkref(obj): # We've never seen this object so return its # json representation. return self._pop(self._flatten_obj_instance(obj)) else: # We've seen this object before so place an object # reference tag in the data. This avoids infinite recursion # when processing cyclical objects. return self._pop(self._getref(obj)) return self._pop(data)