コード例 #1
0
ファイル: test_config.py プロジェクト: mgeier/jupytext
def test_find_jupytext_configuration_file(tmpdir):
    nested = tmpdir.mkdir("nested")

    # Start with no configuration
    assert find_jupytext_configuration_file(str(nested)) is None

    # Configuration file in the parent directory
    root_config = tmpdir.join("jupytext.yml")
    root_config.write("\n")
    assert os.path.samefile(
        find_jupytext_configuration_file(str(tmpdir)), str(root_config)
    )
    assert os.path.samefile(
        find_jupytext_configuration_file(str(nested)), str(root_config)
    )

    # Local configuration file
    local_config = nested.join(".jupytext")
    local_config.write("\n")
    assert os.path.samefile(
        find_jupytext_configuration_file(str(tmpdir)), str(root_config)
    )
    assert os.path.samefile(
        find_jupytext_configuration_file(str(nested)), str(local_config)
    )
コード例 #2
0
ファイル: test_config.py プロジェクト: mgeier/jupytext
def test_jupytext_py_is_not_a_configuration_file(tmpdir):
    jupytext_py = tmpdir.join("jupytext.py")
    jupytext_py.write("# Not a config file!")

    assert find_jupytext_configuration_file(str(tmpdir)) is None

    dot_jupytext_py = tmpdir.join(".jupytext.py")
    dot_jupytext_py.write("# This is a config file!")

    assert find_jupytext_configuration_file(str(tmpdir)) == str(dot_jupytext_py)
コード例 #3
0
#       extension: .py
#       format_name: percent
#       format_version: '1.3'
#       jupytext_version: 1.6.0
#   kernelspec:
#     display_name: Python 3
#     language: python
#     name: python3
# ---

# %% [markdown]
# ### From https://www.kaggle.com/prmohanty/python-how-to-save-and-load-ml-models

# %%
from jupytext.config import find_jupytext_configuration_file
find_jupytext_configuration_file('.')

# %% [markdown]
# # Entraînement du modèle

# %%
# Import Required packages
#-------------------------

# Import the Logistic Regression Module from Scikit Learn
from sklearn.linear_model import LogisticRegression

# Import the IRIS Dataset to be used in this Kernel
from sklearn.datasets import load_iris

# Load the Module to split the Dataset into Train & Test