コード例 #1
0
def test_outlier_step_image_weak_CR_nodither(exptype, tsovisit):
    """Test whole step with an outlier for TSO & coronagraphic modes"""
    bkg = 1.5
    sig = 0.02
    container = datamodels.ModelContainer(
        we_many_sci(background=bkg,
                    sigma=sig,
                    signal=7.0,
                    exptype=exptype,
                    tsovisit=tsovisit))

    # Drop a weak CR on the science array
    # no noise so it should always be above the default threshold of 5
    container[0].data[12, 12] = bkg + sig * 10

    result = OutlierDetectionStep.call(container)

    # Make sure nothing changed in SCI array
    for image, corrected in zip(container, result):
        np.testing.assert_allclose(image.data, corrected.data)

    # Verify source is not flagged
    for r in result:
        assert r.dq[7, 7] == datamodels.dqflags.pixel["GOOD"]

    # Verify CR is flagged
    assert result[0].dq[12, 12] == OUTLIER_DO_NOT_USE
コード例 #2
0
def test_outlier_step_no_outliers(we_three_sci):
    """Test whole step, no outliers"""
    container = datamodels.ModelContainer(list(we_three_sci))
    pristine = container.copy()
    result = OutlierDetectionStep.call(container)

    # Make sure nothing changed in SCI and DQ arrays
    for image, uncorrected in zip(pristine, container):
        np.testing.assert_allclose(image.data, uncorrected.data)
        np.testing.assert_allclose(image.dq, uncorrected.dq)

    # Make sure nothing changed in SCI and DQ arrays
    for image, corrected in zip(container, result):
        np.testing.assert_allclose(image.data, corrected.data)
        np.testing.assert_allclose(image.dq, corrected.dq)
コード例 #3
0
def test_outlier_step(we_three_sci):
    """Test whole step with an outlier"""
    container = datamodels.ModelContainer(list(we_three_sci))

    # Drop a CR on the science array
    container[0].data[12, 12] += 1e3

    result = OutlierDetectionStep.call(container)

    # Make sure nothing changed in SCI array
    for image, corrected in zip(container, result):
        np.testing.assert_allclose(image.data, corrected.data)

    # Verify source is not flagged
    for r in result:
        assert r.dq[7, 7] == datamodels.dqflags.pixel["GOOD"]

    # Verify CR is flagged
    assert result[0].dq[12, 12] == OUTLIER_DO_NOT_USE
コード例 #4
0
def test_outlier_step_square_source_no_outliers(we_three_sci):
    """Test whole step with square source with sharp edges, no outliers"""
    container = datamodels.ModelContainer(list(we_three_sci))

    # put a square source in all three exposures
    for ccont in container:
        ccont.data[5:15, 5:15] += 1e3

    pristine = container.copy()
    result = OutlierDetectionStep.call(container)

    # Make sure nothing changed in SCI and DQ arrays
    for image, uncorrected in zip(pristine, container):
        np.testing.assert_allclose(image.data, uncorrected.data)
        np.testing.assert_allclose(image.dq, uncorrected.dq)

    # Make sure nothing changed in SCI and DQ arrays
    for image, corrected in zip(container, result):
        np.testing.assert_allclose(image.data, corrected.data)
        np.testing.assert_allclose(image.dq, corrected.dq)