def app_function(): try: # Read account id and private from environment variables account_id = account['ID'] private_key = '' with open('einstein_platform.pem', 'r') as f: for line in f: private_key += line # Set expiry time expiry = int(time.time()) + (15 * 60) # Generate an assertion using RSA private key assertion = jwt_helper.generate_assertion(account_id, private_key, expiry) # Obtain oauth token token = token_generator.generate_token(assertion) response = token.json() # If there is no token print the response if 'access_token' not in response: raise ValueError( "Access token generation failed. Received reply: \"{}\"". format(response)) else: # Collect the access token from response access_token = response['access_token'] # Make a prediction call using image url prediction_url_response = prediction.predict_with_url( access_token, 'GeneralImageClassifier', 'https://animalso.com/wp-content/uploads/2017/01/Siberian-Husky_7.jpg' ) # Print prediction response pprint.pprint(prediction_url_response.json()) # Make a prediction call using image file # prediction_file_response = prediction.predict_with_image_file(access_token, 'GeneralImageClassifier', # '/path/to/image/file/Siberian-Husky.jpg') # Print prediction response # pprint.pprint(prediction_file_response.json()) except Exception as e: traceback.print_exc()
def main(): try: print("Hello") # Read account id and private from environment variables account_id = os.environ['EINSTEIN_VISION_ACCOUNT_ID'] private_key = os.environ['EINSTEIN_VISION_PRIVATE_KEY'].decode( 'string_escape') # Set expiry time expiry = int(time.time()) + (15 * 60) # Generate an assertion using RSA private key assertion = jwt_helper.generate_assertion(account_id, private_key, expiry) # Obtain oauth token token = token_generator.generate_token(assertion) print("CC") response = token.json() print(response) # If there is no token print the response if 'access_token' not in response: raise ValueError( "Access token generation failed. Received reply: \"{}\"". format(response)) else: # Collect the access token from response access_token = response['access_token'] # Make a prediction call using image url prediction_url_response = prediction.predict_with_url( access_token, 'GeneralImageClassifier', 'https://animalso.com/wp-content/uploads/2017/01/Siberian-Husky_7.jpg' ) # Print prediction response pprint.pprint(prediction_url_response.json()) # Make a prediction call using image file # prediction_file_response = prediction.predict_with_image_file(access_token, 'GeneralImageClassifier', # '/path/to/image/file/Siberian-Husky.jpg') # Print prediction response # pprint.pprint(prediction_file_response.json()) except Exception as e: traceback.print_exc()
def main(): try: account_id = '*****@*****.**' # Your Einstein Account ID private_key = open("einstein_platform.pem", "r").read() #Your Einstein Private Key file # Set expiry time expiry = int(time.time()) + (15 * 60) # Generate an assertion using RSA private key assertion = jwt_helper.generate_assertion(account_id, private_key, expiry) # Obtain oauth token token = token_generator.generate_token(assertion) response = token.json() # If there is no token print the response if 'access_token' not in response: raise ValueError( "Access token generation failed. Received reply: \"{}\"". format(response)) else: # Collect the access token from response access_token = response['access_token'] #data_file='Rakesh_Sample.csv' #SFCC_Q1_2019_Recognition_Data.csv' data_file = 'TextFileForSentimentAnalysis.csv' data_file_with_sentiment = "Sentiment_of_" + data_file cleandata(data_file) df = pandas.read_csv(data_file) #Add three additional column to update sentiment value for the text df.insert(1, 'positive', '') df.insert(2, 'neutral', '') df.insert(3, 'negative', '') #df.insert(4,'word_count','') for index, row in df.iterrows(): # Make a Sentiment prediction call print('Submited request for sentiment analysis of of text index #', index) prediction_url_response = predictionSentiment.predict( access_token, row['citation']) print('Recieved sentiment for text index #', index) # Print prediction response resp = prediction_url_response.json() probabilities = resp['probabilities'] for sentiment in probabilities: #pprint.pprint(sentiment) if sentiment['label'] == 'positive': row['positive'] = sentiment['probability'] elif sentiment['label'] == 'neutral': row['neutral'] = sentiment['probability'] elif sentiment['label'] == 'negative': row['negative'] = sentiment['probability'] df.to_csv(data_file_with_sentiment) textStatistics(data_file_with_sentiment) except Exception as e: traceback.print_exc()
def main(): try: # Read account id and private from environment variables #account_id = os.environ['EINSTEIN_VISION_ACCOUNT_ID'] #private_key = os.environ['EINSTEIN_VISION_PRIVATE_KEY'].decode('string_escape') account_id = '*****@*****.**' private_key = """ -----BEGIN RSA PRIVATE KEY----- MIIEpAIBAAKCAQEApndK94LOWGJATet94opTPR4kjv0j66LrhsQtzyG+Ji6pVrJa Nv6HEVpbE4Iy1cZJ4IyyeQ0yUMNDcJ4E0HZVT514ckNhJWIS0pO9lCrFsWNabc+7 U2q7nL4/7iS5QGvbFU37E1l7Vwtx2Ic0/Xm7czSHngALs9j0IWE6CGbaJfKosJKZ CCsVIF6hnRV5/mjDWhav8m6gEeqqMPhZ6in74sPTEd/r5xXJ7hQu1lbtb2IyMNN6 K0o3gGPSiREvPvkh8KPWOtqzuMH+LHXvb/TPMCDV10q2/5b05NJ9sEnVQ9Rh54R/ EibKaBvNLBAmVm3IzW4sIFjE4bn8OIG11xz2CQIDAQABAoIBAQCjOO0k6/lv6Eat IG76pi8gCmJGYifKcKEIL2vLYYaU4cPg4lha/A9sEHClHFDEE/10VADbePkQ/6Us 04Rc8uqLehgT0cV7ZkKWf46vrZDSclzEt58yF8GF23XMB+4tIJRcu22od2Dc5Lfo XAq1T5thRuyDHABdhCk8YZ0Jh+/2q/L+k9utFZuHkHfBfKrzzpDktFu1vh4qK2xi ZCu+3/P72oZ5OUKz/kheDP2NTKJiIjt3HPxXuIBXDDlarVb+8YA05KIYOvSaSH0b r1Odm4CRJbJkkCkXp+5GPxuJRI5Iz4kXfJO4nQEPYDelTFW0c9e1Rwn4adJUrs7s +juOarRRAoGBAPBWvVnDm9Ito7urQhWXinOGfQHIfujltWmtzV6Pq8F+MDLt9yfc TWdenVx1N951U3l26bNtB7tjnJKFaYefX+Ox+N1eAVGdoAm6SqsN/hsoIIUI5FzR C0QSEDLTYEfk/pJrqQ7DBgtWkNc9OMyGvOzguckMLfE2HobVzpSg+y63AoGBALFQ OoXPOSEEbyUKXUc9CEQ+mcIjZUlILxtUA2Pgbh9BglOWmKzqQUS6b6cK0rrX8Aoy pyMiDxPRYudzUYixJC+jeJKqmeC9FA/OXmPmHkswyVdAQ1X91+rVu7xmcv7jSCeD nGr7Yp226fRlq6kJzPPKi19mYM34spD0U9WxEEE/AoGBAOmzfrY9llR/GrqPYlg6 nl+NxBqqynVPgOM9JPkxfVNOkDHF4dJ5zy6X+y5/sQ75SW1QKxnVCHK3/vUfE6nU WNrBIXyoP2IMgyVSZ+8DUTc5Ar46Ek0K3QiZA/VYQ0RFsSHR3HdFPqhhyb/ygTuo PSedsiqEVFw8QtzcJN+z1evrAoGABflN/3Qb2KDtnbHbsqq7vJDfXUsT/oQQEjui YZsOGr96RJauTiUWTdp6KIaU0vazf6R1PRnIqEJFssaP2KsfLPu09DwLMycrpdyu EW+PVbkvD2F640rKG39X8+D/vtapd6tXecM+b1HaUAGc5vUNkqkgSPaKDGZ0na2d pXVxtsECgYBi/XuDRPviQuZE7nWGRhKOSKmQZ2qy/6zBaUGU1m/ArUACmU6NuI2t KeF7J38BAtTCrhpp5whWW7Uooe8FxvhWNe+CkxdNoNoz5GyFUAl4IKfb/HX5nUkL Xpd2APOZoLNf2gJZCycDmratthie+Ex9YULGSxYFgAlg3Ev5tQz20g== -----END RSA PRIVATE KEY----- """ # Set expiry time expiry = int(time.time()) + (15 * 60) # Generate an assertion using RSA private key assertion = jwt_helper.generate_assertion(account_id, private_key, expiry) # Obtain oauth token token = token_generator.generate_token(assertion) response = token.json() # If there is no token print the response if 'access_token' not in response: raise ValueError( "Access token generation failed. Received reply: \"{}\"". format(response)) else: # Collect the access token from response access_token = response['access_token'] # Upload the dataset to einstein.ai DS = dataset(access_token=access_token) #path = 'https://raw.githubusercontent.com/kaul-vineet/socialstudio-ml/master/data/intent_tagging.csv' #response = DS.create_intent_dataset(path) #print(json.dumps(response, indent=4, sort_keys=True)) # Train the model on einstein.ai [] id = '1127772' #DS = dataset(access_token=access_token) response = DS.train_dataset(id) #if('available' in response): # print(json.dumps(response, indent=4, sort_keys=True)) #else: # print('Response status ok?: ' + str(response.ok)) # print(json.dumps(response.text, indent=4, sort_keys=True)) # Check the model training status on einstein.ai [] id = 'YRVFEBIDWGX4I6EBKDOFU5KRQM' #response = DS.get_train_status(id) #print(json.dumps(response, indent=4, sort_keys=True)) #data = json.loads(json.dumps(response)) #print ('************ THE MODEL TRAINING IS IN PROGRESS ************') #while data['status'] != 'SUCCEEDED': # print ('THE MODEL STATUS IS :' + data['status']) # time.sleep(30) #else: # print ('THE MODEL STATUS IS :' + data['status'] + ' WITH LEARNING RATE OF ' + str(data['learningRate'])) # Check the predictions on einstein.ai [] model_id = 'YRVFEBIDWGX4I6EBKDOFU5KRQM' document = 'hey guys, im a black trans creative named wondy!! i make art, unfortunately my account was suspended and i lost my 3.5k following and clientele :( please retweet this post so i can get my product back out there as this is my income!! any support is phenomenal' predict = prediction(access_token=access_token) response = predict.predict_social_tag(document, model_id) probabilities = response['probabilities'] max_prob = 0 max_tag = '' for x in probabilities: if max_prob < x['probability'] * 100: max_prob = x['probability'] * 100 max_tag = str(x['label']) print('There is ' + str(max_prob) + ' probability that this is ' + max_tag + ' post.') except Exception as e: traceback.print_exc()