コード例 #1
0
    def __init__(self, *inputs, label=""):
        self.inputs = inputs
        self.plot = Plot()
        self.max_num_steps = 0

        'Assuming that all models use the same dynamics and same initial set for now'
        self.model = inputs[0]['model']
        self.label = label
コード例 #2
0
def test_lin_HarOsc():

    NUM_STEPS = 5

    model = HarOsc()
    #trajs = generate_traj(model, 10, 200)
    mod_reach = ReachSet(model)
    #mod_flow = mod_reach.computeReachSet()

    sir_plot = Plot()

    #mod_flow = mod_reach.computeReachSet(NUM_STEPS)

    SIR_LIN_ITER_STEPS = 1 #Number of steps between each recomputation of PCA Templates.

    lin_strat = LinStrat(model, iter_steps=SIR_LIN_ITER_STEPS)
    mod_lin_flow = mod_reach.computeReachSet(NUM_STEPS, tempstrat=lin_strat, transmode=BundleMode.AFO)
    trajs = [Traj(model, point, steps=NUM_STEPS) for point in product([-5,-4],[0,1])]

    'Generaste the trajectories and add them to the plot.'
    sir_plot.add(mod_lin_flow, "HarOsc LINAPP")
    for t in trajs:
        sir_plot.add(t)

    sir_plot.plot2DPhase(0,1, separate=True, plotvertices=True)

    Timer.generate_stats()
コード例 #3
0
def test_pca_lin_Phos():

    NUM_STEPS = 30
    PHOS_LIN_ITER_STEPS = 1  #Number of steps between each recomputation of LinApp Templates.
    PHOS_PCA_ITER_STEPS = 1  #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    PHOS_PCA_TRAJ_STEPS = 5  #Number of steps our sample trajectories should run.
    PHOS_PCA_NUM_TRAJ = 200  #Number of sample trajectories we should use for the PCA routine.
    PHOS_LIFE_SPAN = 3

    unit_model = Phosphorelay_UnitBox()
    unit_mod_reach = ReachSet(unit_model)

    #points = [[1,1,1], [1.005, 1,1], [1.01,1.01,1.01], [1.005,1.01,1.01], [1,1.005,1], [1.01,1,1.05]]
    #trajs = [Traj(unit_model , point, NUM_STEPS) for point in points]

    multi_strat = MultiStrategy(LinStrat(unit_model, iter_steps=PHOS_LIN_ITER_STEPS), \
                                DelayedPCAStrat(unit_model, traj_steps=PHOS_PCA_TRAJ_STEPS, num_trajs=PHOS_PCA_NUM_TRAJ, life_span=PHOS_LIFE_SPAN))
    #PCAStrat(unit_model, traj_steps=PHOS_PCA_TRAJ_STEPS, num_trajs=PHOS_PCA_NUM_TRAJ, iter_steps=PHOS_PCA_ITER_STEPS+PHOS_PCA_DELAY))
    #PCAStrat(unit_model, traj_steps=PHOS_PCA_TRAJ_STEPS, num_trajs=PHOS_PCA_NUM_TRAJ, iter_steps=PHOS_PCA_ITER_STEPS+2*PHOS_PCA_DELAY))
    mod_lin_flow = unit_mod_reach.computeReachSet(NUM_STEPS,
                                                  tempstrat=multi_strat)

    # points = [[0,1.97], [0.01, 1.97], [0.01,2], [0,2], [0.005,1.97], [0.005,2], [0,1.97],  [0,1.985], [0.01,1.985]]
    #trajs = [Traj(unit_model, point, NUM_STEPS) for point in points]

    phos_plot = Plot()
    phos_plot.add(mod_lin_flow)

    'Add trajectories'
    for traj in trajs:
        phos_plot.add(traj)

    phos_plot.plot2DPhase(0, 1, separate=False, plotvertices=True)
コード例 #4
0
def test_sir_pca_strat():

    #Compute Sapo's version.3
    sir_pca = SIR_UnitBox(delta=0.5)
    sir = SIR(delta=0.5)

    sir_reach = ReachSet(sir)
    sir_flow = sir_reach.computeReachSet(NUM_STEPS)
    sir_plot = Plot()
    sir_plot.add(sir_flow, "SIR SAPO")

    for i in range(ITER_SPREAD, ITER_SPREAD + 1):
        print(
            colored("Generating PCA with Iterative Step Size: {}".format(i),
                    "white",
                    attrs=['reverse', 'blink']))
        sir_pca_reach = ReachSet(sir_pca)
        sir_flow_pca = sir_pca_reach.computeReachSet(
            NUM_STEPS,
            tempstrat=PCAStrat(sir_pca, iter_steps=i),
            transmode=BundleMode.AFO)
        sir_plot.add(sir_flow_pca, "SIR_PCA_{}".format(i))

    sir_plot.plot2DPhase(0, 1, separate=False, plotvertices=True)
    #sir_plot.plot(0,1,2)
    Timer.generate_stats()
    """
コード例 #5
0
def test_sir_lin_pca_strat():

    NUM_STEPS = 70
    SIR_PCA_ITER_STEPS = 1 #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    SIR_PCA_TRAJ_STEPS = 1 #Number of steps our sample trajectories should run.
    SIR_PCA_NUM_TRAJ = 100 #Number of sample trajectories we should use for the PCA routine.
    SIR_LIN_ITER_STEPS = 1
    #
    SIR_PCA_LIFE_SPAN = 3

    sir_pca = SIR_UnitBox(delta=0.5)
    sir_plot = Plot()

    points = [[0.79,0.19,0], [0.79, 0.2,0], [0.8,0.19,0], [0.8,0.2,0], [0.79,0.195,0], [0.8,0.195,0], [0.795,0.19,0],  [0.795,0.2,0]]
    trajs = [Traj(sir_pca, point, NUM_STEPS) for point in points]

    pca_strat = MultiStrategy(LinStrat(sir_pca, iter_steps=SIR_LIN_ITER_STEPS), \
                              DelayedPCAStrat(sir_pca, traj_steps=SIR_PCA_TRAJ_STEPS, num_trajs=SIR_PCA_NUM_TRAJ, life_span=SIR_PCA_LIFE_SPAN))

    sir_pca_reach = ReachSet(sir_pca)
    sir_flow_pca = sir_pca_reach.computeReachSet(NUM_STEPS, tempstrat=pca_strat)
    sir_plot.add(sir_flow_pca, "SIR_LinApp&PCA")

    'Add trajectories'
    for traj in trajs:
        sir_plot.add(traj)

   # sir_plot.plot2DPhase(0,1,separate=False, plotvertices=True)
    sir_plot.plot2DPhase(1,2,separate=False, plotvertices=True)
    sir_plot.plot2DPhase(0,2,separate=False, plotvertices=True)

    Timer.generate_stats()
コード例 #6
0
def test_pca_lin_Rossler():
    NUM_STEPS = 5
    ROSS_PCA_ITER_STEPS = 1 #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    ROSS_PCA_TRAJ_STEPS = 1 #Number of steps our sample trajectories should run.
    ROSS_PCA_NUM_TRAJ = 200 #Number of sample trajectories we should use for the PCA routine.

    rossler_pca = Rossler_UnitBox(delta=0.5)
    rossler_plot = Plot()

    points = [[0.05,4.95,0.05], [0.1,4.95,0.05], [0.05,5,0.05], [0.1,5,0.05], [0.05,4.95,0.05], [0.05,4.95,0.1], [0.1,4.95,0.1], [0.1,5,0.1]]
    trajs = [Traj(rossler_pca, point, NUM_STEPS) for point in points]

    pca_strat = PCALinStrat(rossler_pca, traj_steps=ROSS_PCA_TRAJ_STEPS, num_trajs=ROSS_PCA_NUM_TRAJ, iter_steps=ROSS_PCA_ITER_STEPS)

    ross_pca_reach = ReachSet(rossler_pca)
    ross_flow_pca = ross_pca_reach.computeReachSet(NUM_STEPS, tempstrat=pca_strat)
    rossler_plot.add(ross_flow_pca, "SIR_LinApp&PCA")

    'Add trajectories'
    for traj in trajs:
        rossler_plot.add(traj)

    rossler_plot.plot2DPhase(0,1,separate=True, plotvertices=True)
    Timer.generate_stats()
コード例 #7
0
def test_sir_cut_strat():

    #Compute Sapo's version.
    sir_cut = SIR()
    sir = SIR_UnitBox()
    sir_reach = ReachSet(sir)

    sir_flow = sir_reach.computeReachSet(NUM_STEPS)
    sir_plot = Plot()
    sir_plot.add(sir_flow)

    sir_cut_reach = ReachSet(sir_cut)
    sir_cut_flow = sir_cut_reach.computeReachSet(NUM_STEPS, CutStrat(sir_cut))

    sir_sapo_flow = sir_cut_reach.computeReachSet(NUM_STEPS)

    sir_plot.add(sir_cut_flow, "SIR_CUT_150")
    sir_plot.add(sir_sapo_flow, "SIR_SAPO")

    sir_plot.plot(0, 1, 2)
    Timer.generate_stats()
コード例 #8
0
def test_pca_Quad():
    NUM_STEPS = 5
    QUAD_PCA_ITER_STEPS = 1  #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    QUAD_PCA_TRAJ_STEPS = 1  #Number of steps our sample trajectories should run.
    QUAD_PCA_NUM_TRAJ = 200  #Number of sample trajectories we should use for the PCA routine.

    quad_pca = Quadcopter_UnitBox()
    quad_plot = Plot()

    #trajs = [Traj(rossler_pca, point, NUM_STEPS) for point in points]

    pca_strat = PCAStrat(quad_pca,
                         traj_steps=QUAD_PCA_TRAJ_STEPS,
                         num_trajs=QUAD_PCA_NUM_TRAJ,
                         iter_steps=QUAD_PCA_ITER_STEPS)
    quad_pca_reach = ReachSet(quad_pca)
    quad_flow_pca = quad_pca_reach.computeReachSet(NUM_STEPS,
                                                   tempstrat=pca_strat)

    'Add trajectories'
    #for traj in trajs:
    #    rossler_plot.add(traj)

    quad_plot.add(quad_flow_pca, "Quad_PCA")
    quad_plot.plot2DPhase(2, 5, separate=True, plotvertices=True)
コード例 #9
0
def test_sir_lin_strat():

    #Compute Sapo's version.
    sir_lin = SIR_UnitBox(delta=0.5)
    sir = SIR()
    #sir_reach = ReachSet(sir)

    #sir_flow = sir_reach.computeReachSet(NUM_STEPS)
    sir_plot = Plot()
    #sir_plot.add(sir_flow)

    for i in range(10, 11):
        print(
            colored(
                "Generating Lin_Approx with Iterative Step Size: {}".format(i),
                "white",
                attrs=['reverse', 'blink']))
        sir_lin_reach = ReachSet(sir_lin)
        sir_flow_lin = sir_lin_reach.computeReachSet(
            NUM_STEPS, LinStrat(sir_lin, iter_steps=i))
        sir_plot.add(sir_flow_lin, "SIR_LIN_{}".format(i))

    #sir_plot.plot(0,1,2)
    sir_plot.plot2DPhase(0, 1, separate=True)
    Timer.generate_stats()
    """
コード例 #10
0
def test_pca_HarOsc():

    NUM_STEPS = 4

    model = HarOsc()
    #trajs = generate_traj(model, 10, 200)
    mod_reach = ReachSet(model)
    #mod_flow = mod_reach.computeReachSet()

    sir_plot = Plot()

    SIR_PCA_ITER_STEPS = 1 #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    SIR_PCA_TRAJ_STEPS = 2 #Number of steps our sample trajectories should run.
    SIR_PCA_NUM_TRAJ = 100 #Number of sample trajectories we should use for the PCA routine.

    pca_strat = PCAStrat(model, traj_steps=SIR_PCA_TRAJ_STEPS, num_trajs=SIR_PCA_NUM_TRAJ, iter_steps=SIR_PCA_ITER_STEPS)
    mod_pca_flow = mod_reach.computeReachSet(NUM_STEPS, tempstrat=[pca_strat], transmode=BundleMode.AFO)
    #trajs = generate_traj(model, 10, 200)

    'Generaste the trajectories and add them to the plot.'
    sir_plot.add(mod_pca_flow, "HarOsc PCA")
    sir_plot.plot2DPhase(0,1, separate=True, plotvertices=True)
    
    Timer.generate_stats()
コード例 #11
0
def test_all_pca():

    num_steps = 100

    model_var_dict = {
        Basic: [0],
        Rossler_PCA: [0, 1, 2],
        SIR_PCA: [0, 1, 2],
        LotkaVolterra_PCA: [0, 1, 2],
        Quadcopter_PCA: [2, 5, 13],
        Phosphorelay_PCA: [0, 1]
    }

    model_path_dict = {
        Basic: "/Users/edwardkim/Work/kaa-optimize/figures/Basic",
        Rossler_PCA: "/Users/edwardkim/Work/kaa-optimize/figures/Rossler",
        SIR_PCA: "/Users/edwardkim/Work/kaa-optimize/figures/SIR",
        LotkaVolterra_PCA:
        "/Users/edwardkim/Work/kaa-optimize/figures/LotVolt",
        Quadcopter_PCA: "/Users/edwardkim/Work/kaa-optimize/figures/Quad",
        Phosphorelay_PCA: "/Users/edwardkim/Work/kaa-optimize/figures/Phos"
    }

    for model, var_ind_list in model_var_dict.items():

        print("\n Generating Model: {}\n".format(model))

        flowpipe = ReachSet(model()).computeReachSet(num_steps, PCAStrat)
        plot = Plot()
        plot.add(flowpipe)
        plot.plot(*var_ind_list, path=model_path_dict[model])
コード例 #12
0
def test_phase_sir():

    sir_mod = SIR_UnitBox(delta=0.5)
    sir_reach = ReachSet(sir_mod)

    flowpipe = sir_reach.computeReachSet(50)
    plot = Plot()
    plot.add(flowpipe)
    plot.plot2DPhase(1, 2)
コード例 #13
0
def test_basic():

    basic_mod = Basic()
    basic_reach = ReachSet(basic_mod)
    flowpipe = basic_reach.computeReachSet(300)

    basic_plot = Plot()
    basic_plot.add_flowpipe(flowpipe)
    basic_plot.plot(0)
コード例 #14
0
def pca_lin_comp():

    sir = SIR_UnitBox()
    sir_reach = ReachSet(sir)

    sir_flow = sir_reach.computeReachSet(NUM_STEPS)
    sir_plot = Plot()
    sir_plot.add(sir_flow)

    sir_lin_flow = sir_reach.computeReachSet(NUM_STEPS,
                                             LinStrat(sir, iter_steps=150))
    #sir_pca_flow = sir_reach.computeReachSet(NUM_STEPS, PCAStrat(sir, iter_steps=50))

    sir_plot.add(sir_lin_flow, "SIR_LIN")
    #sir_plot.add(sir_pca_flow, "SIR_PCA")

    sir_plot.plot(0, 1, 2)
    Timer.generate_stats()
コード例 #15
0
ファイル: test_ll.py プロジェクト: rufoliveira/kaa-dynamic
def test_LL():

    model = LL()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(150)

    ll_plot = Plot()
    ll_plot.add(mod_flow)
    ll_plot.plot(0)

    Timer.generate_stats()
コード例 #16
0
def test_rossler_phase():

    model = Rossler()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(200)

    rossler_plot = Plot()
    rossler_plot.add(mod_flow)
    rossler_plot.plot2DPhase(0,1)

    Timer.generate_stats()
コード例 #17
0
def test_Quad():

    model = Quadcopter()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(3)

    quad_plot = Plot()
    quad_plot.add(mod_flow)
    quad_plot.plot(2, 5, 13)

    Timer.generate_stats()
コード例 #18
0
def test_Rossler():

    model = Rossler()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(300)

    rossler_plot = Plot()
    rossler_plot.add(mod_flow)
    rossler_plot.plot(0,1,2)

    Timer.generate_stats()
コード例 #19
0
def test_basic2():

    basic_mod = Basic2()
    basic_reach = ReachSet(basic_mod)
    flowpipe = basic_reach.computeReachSet(300)

    basic_plot = Plot()
    basic_plot.add(flowpipe)
    basic_plot.plot(0)

    Timer.generate_stats()
コード例 #20
0
def test_LV():

    model = LotkaVolterra()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(100)

    plot = Plot()
    plot.add(mod_flow)
    plot.plot(0,1,2)

    Timer.generate_stats()
コード例 #21
0
def test_Phos():

    model = Phosphorelay()
    #unit_model = Phosphorelay_UnitBox()
    mod_reach = ReachSet(model)
    #mod_unit_reach = ReachSet(unit_model)
    #unit_flow = mod_unit_reach.computeReachSet(200)
    mod_flow = mod_reach.computeReachSet(30)

    phos_plot = Plot()
    phos_plot.add(mod_flow)
    phos_plot.plot2DPhase(0, 1, separate=False, plotvertices=True)

    Timer.generate_stats()
コード例 #22
0
def test_OscPart():

    model = OscPart()
    #trajs = generate_traj(model, 10, 200)
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(20)

    sir_plot = Plot()
    #trajs = generate_traj(model, 10, 200)

    'Generaste the trajectories and add them to the plot.'
    sir_plot.add(mod_flow)
    sir_plot.plot(0, 1, 2)

    Timer.generate_stats()
コード例 #23
0
def test_rossler_lin_strat():

    #Compute Sapo's version.
    rossler_lin = Rossler_UnitBox()
    rossler = Rossler()
    rossler_reach = ReachSet(rossler)

    rossler_flow = rossler_reach.computeReachSet(NUM_STEPS)
    rossler_plot = Plot()
    rossler_plot.add(rossler_flow)

    for i in range(10, 11):
        print(
            colored("Generating LIN with Iterative Step Size: {}".format(i),
                    "white",
                    attrs=['reverse', 'blink']))
        rossler_lin_reach = ReachSet(rossler_lin)
        rossler_flow_lin = rossler_lin_reach.computeReachSet(
            NUM_STEPS, LinStrat(rossler_lin, iter_steps=i))
        rossler_plot.add(rossler_flow_lin, "Rossler_LIN_{}".format(i))

    rossler_plot.plot(0, 1, 2)
    Timer.generate_stats()
コード例 #24
0
def test_lv_pca_strat():

    #Compute Sapo's version.
    lv_pca = LotkaVolterra_UnitBox()
    lv = LotkaVolterra()
    lv_reach = ReachSet(lv)

    lv_flow = lv_reach.computeReachSet(NUM_STEPS)
    lv_plot = Plot()
    lv_plot.add(lv_flow)

    for i in range(1, ITER_SPREAD):
        print(
            colored("Generating PCA with Iterative Step Size: {}".format(2 *
                                                                         i),
                    "white",
                    attrs=['reverse', 'blink']))
        lv_pca_reach = ReachSet(lv_pca)
        lv_flow_pca = lv_pca_reach.computeReachSet(
            NUM_STEPS, PCAStrat(lv_pca, iter_steps=2 * i))
        lv_plot.add(lv_flow_pca, "LV_PCA_{}".format(2 * i))

    lv_plot.plot(0, 1, 2)
    Timer.generate_stats()
コード例 #25
0
def test_quad_pca_strat():

    #Compute Sapo's version.
    quad_pca = Quadcopter_UnitBox()
    quad = Quadcopter()
    quad_reach = ReachSet(quad)

    quad_flow = quad_reach.computeReachSet(NUM_STEPS)
    quad_plot = Plot()
    quad_plot.add(quad_flow)

    for i in range(1, ITER_SPREAD):
        print(
            colored("Generating PCA with Iterative Step Size: {}".format(2 *
                                                                         i),
                    "white",
                    attrs=['reverse', 'blink']))
        quad_pca_reach = ReachSet(quad_pca)
        quad_flow_pca = quad_pca_reach.computeReachSet(
            NUM_STEPS, PCAStrat(quad_pca, iter_steps=2 * i))
        quad_plot.add(quad_flow_pca, "QUAD_PCA_{}".format(2 * i))

    quad_plot.plot(2, 5, 13)
    Timer.generate_stats()
コード例 #26
0
def test_SIR():

    model = SIR(delta=0.5)
    model_unit = SIR_UnitBox()
    #trajs = generate_traj(model, 10, 200)
    mod_reach = ReachSet(model)
    mod_unit_reach = ReachSet(model_unit)
    mod_flow = mod_reach.computeReachSet(70)
    #mod_unit_flow = mod_unit_reach.computeReachSet(300)

    sir_plot = Plot()
    #trajs = generate_traj(model, 10, 200)

    'Generaste the trajectories and add them to the plot.'
    #for traj in trajs:
    #    sir_plot.add(traj)
    sir_plot.add(mod_flow)
    #sir_plot.add(mod_unit_flow)
    sir_plot.plot2DPhase(0,1)
    
    Timer.generate_stats()
コード例 #27
0
def test_rossler_pca_strat():

    #Compute Sapo's version.
    rossler_pca = Rossler_UnitBox()
    rossler = Rossler()
    rossler_reach = ReachSet(rossler)

    #rossler_flow = rossler_reach.computeReachSet(NUM_STEPS)
    rossler_plot = Plot()
    #rossler_plot.add(rossler_flow)

    for i in range(3, 4):
        print(
            colored("Generating PCA with Iterative Step Size: {}".format(i),
                    "white",
                    attrs=['reverse', 'blink']))
        rossler_pca_reach = ReachSet(rossler_pca)
        rossler_flow_pca = rossler_pca_reach.computeReachSet(
            NUM_STEPS, PCAStrat(rossler_pca, iter_steps=i))
        rossler_plot.add(rossler_flow_pca, "Rossler_PCA_{}".format(i))

    rossler_plot.plot(0, 1, 2)
    Timer.generate_stats()
コード例 #28
0
def test_haroscrotate():

    NUM_STEPS = 4

    model = HarOscRotate()
    mod_reach = ReachSet(model)

    mod_flow = mod_reach.computeReachSet(NUM_STEPS)

    SIR_PCA_ITER_STEPS = 1  #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    SIR_PCA_TRAJ_STEPS = 1  #Number of steps our sample trajectories should run.
    SIR_PCA_NUM_TRAJ = 100  #Number of sample trajectories we should use for the PCA routine.

    #pca_strat = PCAStrat(model, traj_steps=SIR_PCA_TRAJ_STEPS, num_trajs=SIR_PCA_NUM_TRAJ, iter_steps=SIR_PCA_ITER_STEPS)
    #mod_pca_flow = mod_reach.computeReachSet(NUM_STEPS, tempstrat=pca_strat)

    vdp_plot = Plot()
    vdp_plot.add(mod_flow, "HarOsc")
    #vdp_plot.add(mod_pca_flow, "HarOsc PCA")
    vdp_plot.plot2DPhase(0, 1)

    Timer.generate_stats()
コード例 #29
0
class Experiment:
    def __init__(self, *inputs, label=""):
        self.inputs = inputs
        self.plot = Plot()
        self.max_num_steps = 0

        'Assuming that all models use the same dynamics and same initial set for now'
        self.model = inputs[0]['model']
        self.label = label

    """
    Execute the reachable set simulations and add the flowpipes to the Plot.
    """

    def execute(self):
        self.output_flowpipes = []

        for experi_input in self.inputs:
            model = experi_input['model']
            strat = experi_input['strat']
            label = experi_input['label']
            num_steps = experi_input['num_steps']

            mod_reach = ReachSet(model)
            mod_flow = mod_reach.computeReachSet(num_steps, tempstrat=strat)
            self.plot.add(mod_flow, label=label)
            self.output_flowpipes.append(mod_flow)
            self.max_num_steps = max(self.max_num_steps, num_steps)

    """
    Plot the results fed into the Plot object
    """

    def plot_results(self, *var_tup, plottrajs=True):
        border_sim_trajs = self.__simulate_border_points(self.max_num_steps)
        if plottrajs:
            self.plot.add(border_sim_trajs)

        self.plot.plot(*var_tup)

    def get_total_vol_results(self):
        assert self.output_flowpipes is not None, "Execute Experiment with ExperimentInputs before retrieving volume data."
        return [flowpipe.total_volume for flowpipe in self.output_flowpipes]

    """
    Extract the initial box intervals from the model
    """

    def __get_init_box(self):
        init_offu = self.model.bund.offu[:self.model.
                                         dim]  #Assume first dim # of offsets are associated to initial box
        init_offl = self.model.bund.offl[:self.model.dim]

        return [[-lower_off, upper_off]
                for lower_off, upper_off in zip(init_offl, init_offu)]

    """
    Sample points from the edges of the box and propagate them for a number of steps.
    """

    def __simulate_border_points(self, num_steps):
        init_box_inter = self.__get_init_box()
        border_points = get_init_box_borders(init_box_inter)

        trajs = [Traj(self.model, point, num_steps) for point in border_points]
        return TrajCollection(trajs)