コード例 #1
0
def generate_krig(init_samp, n_krigsamp, nvar, problem):

    # Kriging Sample
    t1 = time.time()
    init_krigsamp = mcpopgen(type="lognormal",
                             ndim=nvar,
                             n_order=1,
                             n_coeff=5,
                             stddev=0.2,
                             mean=1)
    ykrig = evaluate(init_krigsamp, type=problem)
    t2 = time.time()
    print("50 samp eval", t2 - t1)

    # Evaluate Kriging Sample and calculate PoF real
    init_samp_G = evaluate(init_samp, type=problem)
    total_samp = np.hstack((init_samp, init_samp_G)).transpose()
    positive_samp = total_samp[:, total_samp[nvar] >= 0]
    positive_samp = positive_samp.transpose()
    nsamp = np.size(init_samp, 0)
    npos = np.size(positive_samp, 0)
    Pfreal = 1 - npos / nsamp

    lb = np.floor(np.min(init_samp)) * np.ones(shape=[nvar])
    ub = np.ceil(np.max(init_samp)) * np.ones(shape=[nvar])

    # Set Kriging Info
    KrigInfo = initkriginfo("single")
    KrigInfo["X"] = init_krigsamp
    KrigInfo["y"] = ykrig
    KrigInfo["nvar"] = nvar
    KrigInfo["nsamp"] = n_krigsamp
    KrigInfo["nrestart"] = 5
    KrigInfo["ub"] = ub
    KrigInfo["lb"] = lb
    KrigInfo["nkernel"] = len(KrigInfo["kernel"])
    KrigInfo["n_princomp"] = 4
    KrigInfo["optimizer"] = "lbfgsb"

    #trainkrig
    t = time.time()
    krigobj = KPLS(KrigInfo,
                   standardization=True,
                   standtype='default',
                   normy=False,
                   trainvar=False)
    krigobj.train(parallel=False)
    loocverr, _ = krigobj.loocvcalc()
    elapsed = time.time() - t
    print("elapsed time for train Kriging model: ", elapsed, "s")
    print("LOOCV error of Kriging model: ", loocverr, "%")

    return krigobj, Pfreal
コード例 #2
0
ファイル: akmcs_demo2d.py プロジェクト: jomorlier/KADAL
def generate_krig(init_samp, krigsamp, nvar, problem):

    # Monte Carlo Sampling
    t1 = time.time()
    init_krigsamp = krigsamp
    n_krigsamp = np.size(krigsamp, 0)
    ykrig = evaluate(init_krigsamp, type=problem)
    t2 = time.time()

    init_samp_G = evaluate(init_samp, type=problem)
    total_samp = np.hstack((init_samp, init_samp_G)).transpose()
    positive_samp = total_samp[:, total_samp[nvar] >= 0]
    positive_samp = positive_samp.transpose()
    nsamp = np.size(init_samp, 0)
    npos = np.size(positive_samp, 0)
    Pfreal = 1 - npos / nsamp

    lb = np.floor(np.min(init_samp)) * np.ones(shape=[nvar])
    ub = np.ceil(np.max(init_samp)) * np.ones(shape=[nvar])

    # Set Kriging Info
    KrigInfo = initkriginfo("single")
    KrigInfo["X"] = init_krigsamp
    KrigInfo["y"] = ykrig
    KrigInfo["nvar"] = nvar
    KrigInfo["nsamp"] = n_krigsamp
    KrigInfo["nrestart"] = 5
    KrigInfo["ub"] = ub
    KrigInfo["lb"] = lb
    KrigInfo["nkernel"] = len(KrigInfo["kernel"])
    KrigInfo["optimizer"] = "lbfgsb"

    #trainkrig
    t = time.time()
    krigobj = Kriging(KrigInfo,
                      standardization=True,
                      standtype='default',
                      normy=False,
                      trainvar=False)
    krigobj.train(parallel=False)
    loocverr, _ = krigobj.loocvcalc()
    elapsed = time.time() - t
    print("elapsed time for train Kriging model: ", elapsed, "s")
    print("LOOCV error of Kriging model: ", loocverr, "%")

    return krigobj, Pfreal
コード例 #3
0
    def calc_ft_order(self, first=True, total=False):
        """
        Calculate first and total order Sobol Indices

        Return:
            s1 (numpy array): 1st order sobol indices.
        """
        s1 = np.zeros(self.nvar)
        st = np.zeros(self.nvar)

        for ii in range(self.nvar):
            C_i = deepcopy(self.B)
            C_i[:, ii] = self.A[:, ii]

            # Use Kriging to predict Monte-Carlo
            if self.krigobj is not None:
                nsamp = np.size(C_i, axis=0)
                yci = np.zeros(shape=[nsamp, 1])
                if nsamp <= 10000:
                    yci = self.krigobj.predict(C_i, ['pred'])
                else:
                    run_times = int(np.ceil(nsamp / 10000))
                    for i in range(run_times):
                        start = i * 10000
                        stop = (i + 1) * 10000
                        if i != (run_times - 1):
                            yci[start:stop, :] = self.krigobj.predict(
                                C_i[start:stop, :], ['pred'])
                        else:
                            yci[start:, :] = self.krigobj.predict(
                                C_i[start:, :], ['pred'])

            elif self.krigobj is None and self.problem is not None:
                if not callable(self.problem):
                    yci = evaluate(C_i, self.problem)
                else:
                    yci = self.problem(C_i)

            if first:
                s1[ii] = ((1 / self.n) * np.sum(self.ya * yci) -
                          self.fo_2) / self.denom
            if total:
                st[ii] = 1 - ((
                    (1 / self.n) * np.sum(self.yb * yci) - self.fo_2) /
                              self.denom)

        return [s1, st]
コード例 #4
0
def generate_krig(init_samp, n_krigsamp, nvar, problem, n_cpu):
    init_krigsamp = mcpopgen(type="lognormal",
                             ndim=nvar,
                             n_order=1,
                             n_coeff=5,
                             stddev=0.2,
                             mean=1)
    print("Evaluating Kriging Sample")
    ykrig = evaluate(init_krigsamp, type=problem)
    print(np.count_nonzero(ykrig <= 0))

    lb = (np.min(init_samp, axis=0))
    ub = (np.max(init_samp, axis=0))

    Pfreal = None

    # Set Kriging Info
    KrigInfo = initkriginfo(1)
    KrigInfo["X"] = init_krigsamp
    KrigInfo["y"] = ykrig
    KrigInfo["nvar"] = nvar
    KrigInfo["nsamp"] = n_krigsamp
    KrigInfo["nrestart"] = 5
    KrigInfo["ub"] = ub
    KrigInfo["lb"] = lb
    KrigInfo["nkernel"] = len(KrigInfo["kernel"])
    KrigInfo["n_princomp"] = 4
    KrigInfo["optimizer"] = "lbfgsb"

    #trainkrig
    drm = None
    t = time.time()
    krigobj = KPLS(KrigInfo,
                   standardization=True,
                   standtype='default',
                   normy=False,
                   trainvar=False)
    krigobj.train(n_cpu=n_cpu)
    loocverr, _ = krigobj.loocvcalc()
    elapsed = time.time() - t
    print("elapsed time to train Kriging model: ", elapsed, "s")
    print("LOOCV error of Kriging model: ", loocverr, "%")

    return krigobj, loocverr, drm
コード例 #5
0
    def calc_second_order(self, s1):
        """
        Calculate second order indices
        :return:
        """
        s2 = dict()

        for ii in range(self.nvar - 1):
            for jj in range(ii + 1, self.nvar):
                C_ij = deepcopy(self.B)
                C_ij[:, ii] = self.A[:, ii]
                C_ij[:, jj] = self.A[:, jj]

                # Use Kriging to predict Monte-Carlo
                if self.krigobj is not None:
                    nsamp = np.size(C_ij, axis=0)
                    yci = np.zeros(shape=[nsamp, 1])
                    if nsamp <= 10000:
                        yci = self.krigobj.predict(C_ij, ['pred'])
                    else:
                        run_times = int(np.ceil(nsamp / 10000))
                        for i in range(run_times):
                            start = i * 10000
                            stop = (i + 1) * 10000
                            if i != (run_times - 1):
                                yci[start:stop, :] = self.krigobj.predict(
                                    C_ij[start:stop, :], ['pred'])
                            else:
                                yci[start:, :] = self.krigobj.predict(
                                    C_ij[start:, :], ['pred'])

                elif self.krigobj is None and self.problem is not None:
                    if not callable(self.problem):
                        yci = evaluate(C_ij, self.problem)
                    else:
                        yci = self.problem(C_ij)

                vij = ((1 / self.n) * np.sum(self.ya * yci) - self.fo_2)
                key = "x" + str(ii + 1) + "-x" + str(jj + 1)
                s2[key] = (vij / self.denom) - s1[ii] - s1[jj]

        return s2
コード例 #6
0
def pred(krigobj, init_samp, problem, drmmodel=None):

    nsamp = np.size(init_samp, axis=0)
    Gx = np.zeros(shape=[nsamp, 1])
    if nsamp < 10000:
        Gx = krigobj.predict(init_samp, ['pred'])
    else:
        run_times = int(np.ceil(nsamp / 10000))
        for i in range(run_times):
            start = i * 10000
            stop = (i + 1) * 10000
            if i != (run_times - 1):
                Gx[start:stop, :] = krigobj.predict(init_samp[start:stop, :],
                                                    ['pred'],
                                                    drmmodel=drmmodel)
            else:
                Gx[start:, :] = krigobj.predict(init_samp[start:, :], ['pred'],
                                                drmmodel=drmmodel)

    init_samp_G = evaluate(init_samp, type=problem)

    subs = np.transpose((init_samp_G - Gx))
    subs1 = np.transpose((init_samp_G - Gx) / init_samp_G)
    RMSE = np.sqrt(np.sum(subs**2) / nsamp)
    RMSRE = np.sqrt(np.sum(subs1**2) / nsamp)
    MAPE = 100 * np.sum(abs(subs1)) / nsamp
    print("RMSE = ", RMSE)
    print("MAPE = ", MAPE, "%")
    print("==============================")
    print("UQ")
    mean1 = np.mean(Gx)
    stdev1 = np.std(Gx)
    mean2 = np.mean(init_samp_G)
    stdev2 = np.std(init_samp_G)
    print("model\tmean\tstdev")
    print("real:\t", mean2, "\t", stdev2)
    print("pred:\t", mean1, "\t", stdev1)
    print("==============================")
コード例 #7
0
ファイル: akmcs.py プロジェクト: jomorlier/KADAL
    def run(self, autoupdate=True, disp=True, savedatato=None, logging=False, saveimageto=None, plotdatapos=None,
            plotdataneg=None, loggingAPIkey=None, logname=None, logworkspace=None):
        """
        Run AKMCS analysis

        Args:
            autoupdate (bool): Perform automatic update on design space or not. Default to True.
            disp (bool): Display progress or not. Default to True.
            savedatato (str): Filename to save update data. e.g.: 'filename.csv'

        Return:
             None
        """
        #logging
        if logging:
            if loggingAPIkey is None or logname is None or logworkspace is None:
                raise ValueError('Logging is turned on, APIkey, project and workspace must be specified.')
            self.logging = Experiment(api_key=loggingAPIkey,
                                    project_name=logname, workspace=logworkspace)
            if savedatato is not None:
                self.logging.set_name(savedatato)
            else:
                pass

        else:
            pass
        # Calculate Gx and SigmaG
        # Split init_samp to avoid memory error
        krig_initsamp = self.krigobj.KrigInfo['X']
        t1 = time.time()
        if self.nsamp < 10000:
            self.Gx,self.sigmaG = self.krigobj.predict(self.init_samp, ['pred','s'])
        else:
            run_times = int(np.ceil(self.nsamp/10000))
            for i in range(run_times):
                start = i * 10000
                stop = (i+1) * 10000
                if i != (run_times - 1):
                    self.Gx[start:stop, :], self.sigmaG[:,start:stop] = \
                        self.krigobj.predict(self.init_samp[start:stop, :], ['pred','s'])
                else:
                    self.Gx[start:, :], self.sigmaG[:,start:] = \
                        self.krigobj.predict(self.init_samp[start:, :], ['pred','s'])
        t2 = time.time()

        # Calculate probability of failure
        self.Pf = self.pfcalc()

        # Calculate learning function U
        self.lfucalc()
        self.stopcrit()
        self.updateX = np.array([self.xnew])
        self.minUiter = np.array([self.minU])
        if disp:
            print(f"Done iter no: 0, Pf: {self.Pf}, minU: {self.minU}")

        # Update samples automatically
        while autoupdate:
            labeladded = False
            for i in range(self.maxupdate):
                # Evaluate new samples and append into Kriging object information
                t = time.time()
                ynew = evaluate(self.xnew, type=self.akmcsInfo['problem'])
                self.krigobj.KrigInfo['y'] = np.vstack((self.krigobj.KrigInfo['y'],ynew))
                self.krigobj.KrigInfo['X'] = np.vstack((self.krigobj.KrigInfo['X'], self.xnew))
                self.krigobj.KrigInfo['nsamp'] += 1

                # standardize model and train updated kriging model
                t3 = time.time()
                self.krigobj.standardize()
                self.krigobj.train(disp=False)
                t4 = time.time()

                # Calculate Gx and SigmaG
                # Split init_samp to avoid memory error
                if self.nsamp < 10000:
                    self.Gx, self.sigmaG = self.krigobj.predict(self.init_samp, ['pred', 's'])
                else:
                    run_times = int(np.ceil(self.nsamp / 10000))
                    for ii in range(run_times):
                        start = ii * 10000
                        stop = (ii + 1) * 10000
                        if ii != (run_times - 1):
                            self.Gx[start:stop, :], self.sigmaG[:, start:stop] = \
                                self.krigobj.predict(self.init_samp[start:stop, :], ['pred', 's'])
                        else:
                            self.Gx[start:, :], self.sigmaG[:, start:] = \
                                self.krigobj.predict(self.init_samp[start:, :], ['pred', 's'])

                t5 = time.time()
                # Calculate Pf, COV and LFU
                self.Pf = self.pfcalc()
                self.cov = self.covpf()
                self.lfucalc()
                self.stopcrit()
                t6 = time.time()

                # Update variables
                self.updateX = np.vstack((self.updateX,self.xnew))
                self.minUiter = np.vstack((self.minUiter,self.minU))
                elapsed = time.time() - t
                if disp:
                    print(f"iter no: {i+1}, Pf: {self.Pf}, stopcrit: {self.stop_criteria}, time(s): {elapsed}, "
                          f"ynew: {ynew}")

                if logging:
                    self.logging.log_parameter('krigtype',self.krigobj.KrigInfo['type'])
                    outdict = {"Prob_fail":self.Pf,
                            "stopcrit":self.stop_criteria,
                            "time(s)":elapsed
                    }
                    self.logging.log_metrics(outdict,step=i+1)

                if savedatato is not None:
                    temparray = np.array([i,self.Pf,self.stop_criteria,elapsed])
                    if i == 0:
                        totaldata = temparray[:]
                    else:
                        totaldata = np.vstack((totaldata,temparray))
                    filename =  savedatato
                    np.savetxt(filename, totaldata, delimiter=',', header='iter,Pf,stopcrit,time(s)')
                else:
                    pass

                if saveimageto is not None:
                    imagefile = saveimageto + str(i) + ".PNG"
                    title = "Pf = " + str(self.Pf)
                    plt.figure(0, figsize=[10, 9])
                    if not labeladded:
                        plt.scatter(plotdatapos[:, 0], plotdatapos[:, 1], c='yellow', label='Feasible')
                        plt.scatter(plotdataneg[:, 0], plotdataneg[:, 1], c='cyan', label='Infeasible')
                        plt.scatter(krig_initsamp[:, 0], krig_initsamp[:, 1], c='red', label='Initial Kriging Population')
                        plt.scatter(self.updateX[:, 0], self.updateX[:, 1], s=75, c='black', marker='x', label='Update')
                        labeladded = True
                    else:
                        plt.scatter(plotdatapos[:, 0], plotdatapos[:, 1], c='yellow')
                        plt.scatter(plotdataneg[:, 0], plotdataneg[:, 1], c='cyan')
                        plt.scatter(krig_initsamp[:, 0], krig_initsamp[:, 1], c='red')
                        plt.scatter(self.updateX[:, 0], self.updateX[:, 1], s=75, c='black', marker='x')
                    plt.xlabel('X1', fontsize=18)
                    plt.ylabel('X2', fontsize=18)
                    plt.tick_params(axis='both', which='both', labelsize=16)
                    plt.legend(loc=1, prop={'size': 15})
                    plt.title(title,fontdict={'fontsize':20})
                    plt.savefig(imagefile, format='png')
                else:
                    pass

                # Break condition
                if self.stop_criteria <= 0.05 and i >= 15:
                    break
                else:
                    pass

            print(f"COV: {self.cov}")
            if self.cov <= 0.05:
                break
            else:
                pass
            break  # temporary break for debugging, delete/comment this line later
コード例 #8
0
ファイル: akmcs.py プロジェクト: flowdiagnosticsitb/KADAL
    def run(
        self,
        autoupdate=True,
        disp=True,
        savedatato=None,
        logging=False,
        saveimageto=None,
        plotdatapos=None,
        plotdataneg=None,
        loggingAPIkey=None,
        logname=None,
        logworkspace=None,
    ):
        """
        Run AKMCS analysis

        Args:
            autoupdate (bool): Perform automatic update on design space or not. Default to True.
            disp (bool): Display progress or not. Default to True.
            savedatato (str): Filename to save update data. e.g.: 'filename.csv'

        Return:
             None
        """
        # logging
        if logging:
            # disable logging
            print("Logging feature is currently disabled.")
            pass

        else:
            pass
        # Calculate Gx and SigmaG
        # Split init_samp to avoid memory error
        krig_initsamp = self.krigobj.KrigInfo["X"]
        t1 = time.time()

        run_times = int(np.ceil(self.nsamp / 10000))
        for i in range(run_times):
            start = i * 10000
            if i != (run_times - 1):
                stop = (i + 1) * 10000
            else:
                stop = self.nsamp

            init_samp = self.init_samp[start:stop, :]
            gx, sigmag = self.krigobj.predict(init_samp, ["pred", "s"])
            self.Gx[start:stop, :] = gx
            self.sigmaG[start:stop, :] = sigmag

        t2 = time.time()

        # Calculate probability of failure
        self.Pf = self.pfcalc()

        # Calculate learning function U
        self.lfucalc()
        self.stopcrit()
        self.updateX = np.array([self.xnew])
        self.minUiter = np.array([self.minU])
        if disp:
            print(f"Done iter no: 0, Pf: {self.Pf}, minU: {self.minU}")

        # Update samples automatically
        while autoupdate:
            labeladded = False
            for i_update in range(self.maxupdate):
                # Evaluate new samples and append into Kriging object information
                t = time.time()
                ynew = evaluate(self.xnew, type=self.akmcsInfo["problem"])
                self.krigobj.KrigInfo["y"] = np.vstack(
                    (self.krigobj.KrigInfo["y"], ynew))
                self.krigobj.KrigInfo["X"] = np.vstack(
                    (self.krigobj.KrigInfo["X"], self.xnew))
                self.krigobj.KrigInfo["nsamp"] += 1

                # standardize model and train updated kriging model
                t3 = time.time()
                self.krigobj.standardize()
                self.krigobj.train(disp=False)
                t4 = time.time()

                # Calculate Gx and SigmaG
                # Split init_samp to avoid memory error
                run_times = int(np.ceil(self.nsamp / 10000))
                for ii in range(run_times):
                    start = ii * 10000
                    if ii != (run_times - 1):
                        stop = (ii + 1) * 10000
                    else:
                        stop = self.nsamp

                    init_samp = self.init_samp[start:stop, :]
                    gx, sigmag = self.krigobj.predict(init_samp, ["pred", "s"])
                    self.Gx[start:stop, :] = gx
                    self.sigmaG[start:stop, :] = sigmag

                t5 = time.time()

                # Calculate Pf, COV and LFU
                self.Pf = self.pfcalc()
                self.cov = self.covpf()
                self.lfucalc()
                self.stopcrit()
                t6 = time.time()

                # Update variables
                self.updateX = np.vstack((self.updateX, self.xnew))
                self.minUiter = np.vstack((self.minUiter, self.minU))
                elapsed = time.time() - t
                if disp:
                    print(f"iter no: {i_update+1}, Pf: {self.Pf}, "
                          f"stopcrit: {self.stop_criteria}, "
                          f"time(s): {elapsed}, ynew: {ynew}")

                if logging:
                    self.logging.log_parameter("krigtype",
                                               self.krigobj.KrigInfo["type"])
                    outdict = {
                        "Prob_fail": self.Pf,
                        "stopcrit": self.stop_criteria,
                        "time(s)": elapsed,
                    }
                    self.logging.log_metrics(outdict, step=i_update + 1)

                if savedatato is not None:
                    temparray = np.array(
                        [i_update, self.Pf, self.stop_criteria, elapsed])
                    if i_update == 0:
                        totaldata = temparray[:]
                    else:
                        totaldata = np.vstack((totaldata, temparray))
                    filename = savedatato
                    np.savetxt(
                        filename,
                        totaldata,
                        delimiter=",",
                        header="iter,Pf,stopcrit,time(s)",
                    )
                else:
                    pass

                if saveimageto is not None:
                    imagefile = saveimageto + str(i_update) + ".PNG"
                    title = "Pf = " + str(self.Pf)
                    plt.figure(0, figsize=[10, 9])
                    if not labeladded:
                        plt.scatter(
                            plotdatapos[:, 0],
                            plotdatapos[:, 1],
                            c="yellow",
                            label="Feasible",
                        )
                        plt.scatter(
                            plotdataneg[:, 0],
                            plotdataneg[:, 1],
                            c="cyan",
                            label="Infeasible",
                        )
                        plt.scatter(
                            krig_initsamp[:, 0],
                            krig_initsamp[:, 1],
                            c="red",
                            label="Initial Kriging Population",
                        )
                        plt.scatter(
                            self.updateX[:, 0],
                            self.updateX[:, 1],
                            s=75,
                            c="black",
                            marker="x",
                            label="Update",
                        )
                        labeladded = True
                    else:
                        plt.scatter(plotdatapos[:, 0],
                                    plotdatapos[:, 1],
                                    c="yellow")
                        plt.scatter(plotdataneg[:, 0],
                                    plotdataneg[:, 1],
                                    c="cyan")
                        plt.scatter(krig_initsamp[:, 0],
                                    krig_initsamp[:, 1],
                                    c="red")
                        plt.scatter(
                            self.updateX[:, 0],
                            self.updateX[:, 1],
                            s=75,
                            c="black",
                            marker="x",
                        )
                    plt.xlabel("X1", fontsize=18)
                    plt.ylabel("X2", fontsize=18)
                    plt.tick_params(axis="both", which="both", labelsize=16)
                    plt.legend(loc=1, prop={"size": 15})
                    plt.title(title, fontdict={"fontsize": 20})
                    plt.savefig(imagefile, format="png")
                else:
                    pass

                # Break condition
                if self.stop_criteria <= 0.05 and i_update >= 15:
                    break
                else:
                    pass

            print(f"COV: {self.cov}")
            if self.cov <= 0.05:
                break
            else:
                pass
            break  # temporary break for debugging, delete/comment this line later
コード例 #9
0
ファイル: akmcs_demo2d.py プロジェクト: jomorlier/KADAL
    return xtotal


if __name__ == '__main__':

    nvar = 2
    n_krigsamp = 25
    problem = 'styblinski'
    filename = "akmcs2d.csv"
    figloc = 'akmcsupdate'
    init_samp = mcpopgen(type='normal',
                         ndim=nvar,
                         n_order=6,
                         n_coeff=1,
                         stddev=1.5)
    ysamp = evaluate(init_samp, problem)
    krigsamp = mcpopgen(type='normal',
                        ndim=nvar,
                        n_order=1,
                        n_coeff=2.5,
                        stddev=1.5)
    pos_MC = init_samp[ysamp.flatten() > 0, :]
    neg_MC = init_samp[ysamp.flatten() <= 0, :]

    krigobj, Pfreal = generate_krig(init_samp, krigsamp, nvar, problem)
    xtotal = run_akmcs(krigobj, init_samp, problem, filename, figloc, pos_MC,
                       neg_MC)
    print(Pfreal)

    updateX = xtotal[n_krigsamp:, :]
コード例 #10
0
    def analyze(self, first=True, total=False, second=False):
        """
        Run sensitivity analysis
        Args:
            first (bool): calculate first order or not
            total (bool): calculate total order or not
        Return:
             indices (dictionary): dictionary containing the sobol indices
        """
        if self.krigobj is not None:
            nsamp = np.size(self.A, axis=0)
            self.ya = np.zeros(shape=[nsamp, 1])
            if nsamp <= 10000:
                self.ya = self.krigobj.predict(self.A, ['pred'])
            else:
                run_times = int(np.ceil(nsamp / 10000))
                for i in range(run_times):
                    start = i * 10000
                    stop = (i + 1) * 10000
                    if i != (run_times - 1):
                        self.ya[start:stop, :] = self.krigobj.predict(
                            self.A[start:stop, :], ['pred'])
                    else:
                        self.ya[start:, :] = self.krigobj.predict(
                            self.A[start:, :], ['pred'])

            self.yb = np.zeros(shape=[nsamp, 1])
            if nsamp <= 10000:
                self.yb = self.krigobj.predict(self.B, ['pred'])
            else:
                run_times = int(np.ceil(nsamp / 10000))
                for i in range(run_times):
                    start = i * 10000
                    stop = (i + 1) * 10000
                    if i != (run_times - 1):
                        self.yb[start:stop, :] = self.krigobj.predict(
                            self.B[start:stop, :], ['pred'])
                    else:
                        self.yb[start:, :] = self.krigobj.predict(
                            self.B[start:, :], ['pred'])

        elif self.krigobj is None and self.problem is not None:
            if not callable(self.problem):
                self.ya = evaluate(self.A, self.problem)
                self.yb = evaluate(self.B, self.problem)
            else:
                self.ya = self.problem(self.A)
                self.yb = self.problem(self.B)
        else:
            raise ValueError("Either krigobj or problem must be not None")

        self.fo_2 = (np.sum(self.ya) / self.n)**2
        self.denom = (np.sum(self.ya**2) / self.n) - self.fo_2

        indices = dict()
        if first is True or total is True:
            indices["first"], indices["total"] = self.calc_ft_order(
                first, total)

        if second is True:
            indices["second"] = self.calc_second_order(indices["first"])
        elif second is True and first is False:
            indices["first"], indices["total"] = self.calc_ft_order(True, True)
            indices["second"] = self.calc_second_order(indices["first"])
        else:
            pass

        return indices