def get_StaticMetropolis_instance(D, target_log_pdf): step_size = 0.002 instance = StaticMetropolis(D, target_log_pdf, step_size) # oracle scaling instance.L_C = np.linalg.cholesky(true_cov) return instance
def __init__(self, D, target_log_pdf, n, kernel_sigma, step_size, gamma2=0.1, schedule=None, acc_star=0.234): StaticMetropolis.__init__(self, D, target_log_pdf, step_size, schedule, acc_star) self.n = n self.kernel_sigma = kernel_sigma self.gamma2 = gamma2 self.Z = np.zeros((0, D))
def __init__(self, D, target_log_pdf, grad, step_size, schedule=None, acc_star=None): StaticMetropolis.__init__(self, D, target_log_pdf, step_size, schedule, acc_star) self.grad = grad # members hidden from constructor self.manual_gradient_step_size = None self.do_preconditioning = False self.forward_drift_norms = []
def get_StaticMetropolis_instance(D, target_log_pdf): step_size = 0.002 acc_star = None schedule = None instance = StaticMetropolis(D, target_log_pdf, step_size, schedule, acc_star) # give proposal variance a meaningful shape from previous samples benchmark_samples_fname = "pmc_sv_benchmark_samples.txt" benchmark_samples_sha1 = "d53e505730c41fbe413188530916d9a402e21a87" assert_file_has_sha1sum(benchmark_samples_fname, benchmark_samples_sha1) benchmark_samples = np.loadtxt(benchmark_samples_fname) benchmark_samples = benchmark_samples[np.arange(0, len(benchmark_samples), step=50)] instance.L_C = np.linalg.cholesky(np.cov(benchmark_samples.T)) return instance
def get_StaticMetropolis_instance(D, target_log_pdf): step_size = 8. schedule = one_over_sqrt_t_schedule acc_star = 0.234 instance = StaticMetropolis(D, target_log_pdf, step_size, schedule, acc_star) return instance
def get_StaticMetropolis_instance(D, target_log_pdf): step_size = 1. instance = StaticMetropolis(D, target_log_pdf, step_size) return instance