コード例 #1
0
 def mc_cor(self,
            mc_cov_mat=None,
            method='inse',
            adjust=False,
            b=None,
            r=3):
     if mc_cov_mat is None:
         return st.mc_cor(self.get_samples(),
                          method=method,
                          adjust=adjust,
                          b=b,
                          r=r,
                          rowvar=False)
     else:
         return st.cor_from_cov(mc_cov_mat)
コード例 #2
0
 def mc_cor(self,
            mc_cov_mat=None,
            method='inse',
            adjust=False,
            b=None,
            r=3):
     return np.stack([
         st.mc_cor(self.get_chain(i, key='sample'),
                   method=method,
                   adjust=adjust,
                   b=b,
                   r=r,
                   rowvar=False)
         if mc_cov_mat is None else st.cor_from_cov(mc_cov_mat[i])
         for i in range(self.num_chains())
     ])
コード例 #3
0
ファイル: cor_from_cov.py プロジェクト: papamarkou/kanga
# Examples of empirical correlation matrix computation using cor_from_cov function

# %% Load packages

import numpy as np

from kanga.stats import cor_from_cov

# %% Read chains

chains = np.genfromtxt('chain01.csv', delimiter=',')

num_iters, num_pars = chains.shape

# %% Compute correlation matrix via numpy cor_from_cov function

np_cor_matrix = cor_from_cov(np.cov(chains, rowvar=False))

print('Correlation matrix based on cor_from_cov function:\n{}'.format(
    np_cor_matrix))