コード例 #1
0
def test_partition_label_helper(labels, flat_labels):
    mps = []
    for lbl in labels:
        if isinstance(lbl, list):
            mp = MetaPartition(lbl[0])
            for nested_lbl in lbl[1:]:
                mp = mp.add_metapartition(MetaPartition(label=nested_lbl))
            mps.append(mp)
        else:
            mps.append(MetaPartition(label=lbl))

    assert set(partition_labels_from_mps(mps)) == set(flat_labels)
コード例 #2
0
ファイル: write.py プロジェクト: x-malet/kartothek
def store_dataset_from_partitions(
    partition_list,
    store,
    dataset_uuid,
    dataset_metadata=None,
    metadata_merger=None,
    update_dataset=None,
    remove_partitions=None,
    metadata_storage_format=naming.DEFAULT_METADATA_STORAGE_FORMAT,
):
    store = _instantiate_store(store)

    if update_dataset:
        dataset_builder = DatasetMetadataBuilder.from_dataset(update_dataset)
        metadata_version = dataset_builder.metadata_version
    else:
        mp = next(iter(partition_list), None)
        if mp is None:
            raise ValueError(
                "Cannot store empty datasets, partition_list must not be empty if in store mode."
            )

        metadata_version = mp.metadata_version
        dataset_builder = DatasetMetadataBuilder(
            uuid=dataset_uuid,
            metadata_version=metadata_version,
            partition_keys=mp.partition_keys,
        )

    dataset_builder.explicit_partitions = True

    dataset_builder.table_meta = persist_common_metadata(
        partition_list, update_dataset, store, dataset_uuid)

    # We can only check for non unique partition labels here and if they occur we will
    # fail hard. The resulting dataset may be corrupted or file may be left in the store
    # without dataset metadata
    partition_labels = partition_labels_from_mps(partition_list)
    non_unique_labels = extract_duplicates(partition_labels)

    if non_unique_labels:
        raise ValueError(
            "The labels {} are duplicated. Dataset metadata was not written.".
            format(", ".join(non_unique_labels)))

    if remove_partitions is None:
        remove_partitions = []

    if metadata_merger is None:
        metadata_merger = combine_metadata

    dataset_builder = update_metadata(dataset_builder, metadata_merger,
                                      partition_list, dataset_metadata)
    dataset_builder = update_partitions(dataset_builder, partition_list,
                                        remove_partitions)
    dataset_builder = update_indices(dataset_builder, store, partition_list,
                                     remove_partitions)
    if metadata_storage_format.lower() == "json":
        store.put(*dataset_builder.to_json())
    elif metadata_storage_format.lower() == "msgpack":
        store.put(*dataset_builder.to_msgpack())
    else:
        raise ValueError(
            "Unknown metadata storage format encountered: {}".format(
                metadata_storage_format))
    dataset = dataset_builder.to_dataset()
    return dataset
コード例 #3
0
def store_dataset_from_partitions(
    partition_list,
    store: StoreInput,
    dataset_uuid,
    dataset_metadata=None,
    metadata_merger=None,
    update_dataset=None,
    remove_partitions=None,
    metadata_storage_format=naming.DEFAULT_METADATA_STORAGE_FORMAT,
):
    store = ensure_store(store)

    schemas = set()
    if update_dataset:
        dataset_builder = DatasetMetadataBuilder.from_dataset(update_dataset)
        metadata_version = dataset_builder.metadata_version
        table_name = update_dataset.table_name
        schemas.add(update_dataset.schema)
    else:
        mp = next(iter(partition_list), None)

        if mp is None:
            raise ValueError(
                "Cannot store empty datasets, partition_list must not be empty if in store mode."
            )
        table_name = mp.table_name
        metadata_version = mp.metadata_version
        dataset_builder = DatasetMetadataBuilder(
            uuid=dataset_uuid,
            metadata_version=metadata_version,
            partition_keys=mp.partition_keys,
        )

    for mp in partition_list:
        if mp.schema:
            schemas.add(mp.schema)

    dataset_builder.schema = persist_common_metadata(
        schemas=schemas,
        update_dataset=update_dataset,
        store=store,
        dataset_uuid=dataset_uuid,
        table_name=table_name,
    )

    # We can only check for non unique partition labels here and if they occur we will
    # fail hard. The resulting dataset may be corrupted or file may be left in the store
    # without dataset metadata
    partition_labels = partition_labels_from_mps(partition_list)

    # This could be safely removed since we do not allow to set this by the user
    # anymore. It has implications on tests if mocks are used
    non_unique_labels = extract_duplicates(partition_labels)

    if non_unique_labels:
        raise ValueError(
            "The labels {} are duplicated. Dataset metadata was not written.".
            format(", ".join(non_unique_labels)))

    if remove_partitions is None:
        remove_partitions = []

    if metadata_merger is None:
        metadata_merger = combine_metadata

    dataset_builder = update_metadata(dataset_builder, metadata_merger,
                                      dataset_metadata)
    dataset_builder = update_partitions(dataset_builder, partition_list,
                                        remove_partitions)
    dataset_builder = update_indices(dataset_builder, store, partition_list,
                                     remove_partitions)
    if metadata_storage_format.lower() == "json":
        store.put(*dataset_builder.to_json())
    elif metadata_storage_format.lower() == "msgpack":
        store.put(*dataset_builder.to_msgpack())
    else:
        raise ValueError(
            "Unknown metadata storage format encountered: {}".format(
                metadata_storage_format))
    dataset = dataset_builder.to_dataset()
    return dataset