コード例 #1
0
    def test_zero_vis_online(self):
        """Check online pipeline exits gracefully if all data is flagged
        """
        # Create flagged Mock dataset and wrap it in a KatdalAdapter
        ds = MockDataSet(timestamps=DEFAULT_TIMESTAMPS,
                         subarrays=DEFAULT_SUBARRAYS,
                         spws=self.spws,
                         dumps=self.scans,
                         flags=partial(flags, flagged=True))

        # Dummy CB_ID and Product ID and temp fits disk
        fd = kc.get_config()['fitsdirs']
        fd += [(None, '/tmp/FITS')]
        kc.set_config(output_id='OID', cb_id='CBID', fitsdirs=fd)

        setup_aips_disks()

        # Create the pipeline
        pipeline = pipeline_factory('online', ds, TelescopeState(),
                                    katdal_select=self.select,
                                    uvblavg_params=self.uvblavg_params,
                                    mfimage_params=self.mfimage_params)

        metadata = pipeline.execute()
        # Check metadata is empty and no exceptions are thrown
        assert_equal(metadata, {})

        # Get fits area
        cfg = kc.get_config()
        fits_area = cfg['fitsdirs'][-1][1]

        # Remove the tmp/FITS dir
        shutil.rmtree(fits_area)
コード例 #2
0
    def test_new_online_pipeline(self):
        """
        Tests that a run of the online continuum pipeline exectues.
        """
        # Create Mock dataset and wrap it in a KatdalAdapter
        ds = MockDataSet(timestamps=DEFAULT_TIMESTAMPS,
                         subarrays=DEFAULT_SUBARRAYS,
                         spws=self.spws,
                         dumps=self.scans)

        # Create a FAKE object
        FAKE = object()

        # Test that metadata agrees
        for k, v in DEFAULT_METADATA.items():
            self.assertEqual(v, getattr(ds, k, FAKE))

        # Dummy CB_ID and Product ID and temp fits disk
        fd = kc.get_config()['fitsdirs']
        fd += [(None, '/tmp/FITS')]
        kc.set_config(output_id='OID', cb_id='CBID', fitsdirs=fd)

        setup_aips_disks()

        # Create the pipeline
        pipeline = pipeline_factory('online', ds, TelescopeState(),
                                    katdal_select=self.select,
                                    uvblavg_params=self.uvblavg_params,
                                    mfimage_params=self.mfimage_params)

        metadata = pipeline.execute()

        # Check that output FITS files exist and have the right names
        cfg = kc.get_config()
        cb_id = cfg['cb_id']
        out_id = cfg['output_id']
        fits_area = cfg['fitsdirs'][-1][1]

        for otarg in self.sanitised_target_names:
            out_strings = [cb_id, out_id, otarg, IMG_CLASS]
            filename = '_'.join(filter(None, out_strings)) + '.fits'
            assert_in(filename, metadata['FITSImageFilename'])
            filepath = os.path.join(fits_area, filename)
            assert os.path.isfile(filepath)
            _check_fits_headers(filepath)

        # Remove the tmp/FITS dir
        shutil.rmtree(fits_area)
コード例 #3
0
ファイル: cfg_aips_disks.py プロジェクト: ska-sa/katsdpcontim
def create_parser():
    formatter_class = argparse.ArgumentDefaultsHelpFormatter
    parser = argparse.ArgumentParser(formatter_class=formatter_class)

    parser.add_argument("-a",
                        "--aipsdisks",
                        default=None,
                        type=lambda s: [(None, ds.strip())
                                        for ds in s.split(',')],
                        help="Comma separated list of paths to aipsdisks.")

    parser.add_argument("-f",
                        "--fitsdisks",
                        default=None,
                        type=lambda s: [(None, ds.strip())
                                        for ds in s.split(',')],
                        help="Comma separated list of paths to fitsdisks.")

    return parser


setup_logging()

args = create_parser().parse_args()

kc.set_config(aipsdirs=args.aipsdisks, fitsdirs=args.fitsdisks)
setup_aips_disks()
rewrite_dadevs()
rewrite_netsp()
link_obit_data()
コード例 #4
0
def main():
    setup_logging()
    parser = create_parser()
    args = parser.parse_args()

    # Open the observation
    if (args.access_key is not None) != (args.secret_key is not None):
        parser.error('--access-key and --secret-key must be used together')
    if args.access_key is not None and args.token is not None:
        parser.error('--access-key/--secret-key cannot be used with --token')
    open_kwargs = {}
    if args.access_key is not None:
        open_kwargs['credentials'] = (args.access_key, args.secret_key)
    elif args.token is not None:
        open_kwargs['token'] = args.token
    katdata = katdal.open(args.katdata, applycal='l1', **open_kwargs)

    post_process_args(args, katdata)

    uvblavg_args, mfimage_args, band = _infer_defaults_from_katdal(katdata)

    # Get config defaults for uvblavg and mfimage and merge user supplied ones
    uvblavg_parm_file = pjoin(CONFIG, f'uvblavg_MKAT_{band}.yaml')
    log.info('UVBlAvg parameter file for %s-band: %s', band, uvblavg_parm_file)
    mfimage_parm_file = pjoin(CONFIG, f'mfimage_MKAT_{band}.yaml')
    log.info('MFImage parameter file for %s-band: %s', band, mfimage_parm_file)

    user_uvblavg_args = get_and_merge_args(uvblavg_parm_file, args.uvblavg)
    user_mfimage_args = get_and_merge_args(mfimage_parm_file, args.mfimage)

    # Merge katdal defaults with user supplied defaults
    recursive_merge(user_uvblavg_args, uvblavg_args)
    recursive_merge(user_mfimage_args, mfimage_args)

    # Get the default config.
    dc = kc.get_config()
    # Set up aipsdisk configuration from args.workdir
    if args.workdir is not None:
        aipsdirs = [(None,
                     pjoin(args.workdir, args.capture_block_id + '_aipsdisk'))]
    else:
        aipsdirs = dc['aipsdirs']
    log.info('Using AIPS data area: %s', aipsdirs[0][1])

    # Set up output configuration from args.outputdir
    fitsdirs = dc['fitsdirs']

    outputname = args.capture_block_id + OUTDIR_SEPARATOR + args.telstate_id + \
        OUTDIR_SEPARATOR + START_TIME

    outputdir = pjoin(args.outputdir, outputname)
    # Set writing tag for duration of the pipeline
    work_outputdir = outputdir + WRITE_TAG
    # Append outputdir to fitsdirs
    # NOTE: Pipeline is set up to always place its output in the
    # highest numbered fits disk so we ensure that is the case
    # here.
    fitsdirs += [(None, work_outputdir)]
    log.info('Using output data area: %s', outputdir)

    kc.set_config(aipsdirs=aipsdirs, fitsdirs=fitsdirs)

    setup_aips_disks()

    # Add output_id and capture_block_id to configuration
    kc.set_config(cfg=kc.get_config(),
                  output_id=args.output_id,
                  cb_id=args.capture_block_id)

    # Set up telstate link then create
    # a view based the capture block ID and output ID
    telstate = TelescopeState(args.telstate)
    view = telstate.join(args.capture_block_id, args.telstate_id)
    ts_view = telstate.view(view)

    katdal_select = args.select
    katdal_select['nif'] = args.nif

    # Create Continuum Pipeline
    pipeline = pipeline_factory('online',
                                katdata,
                                ts_view,
                                katdal_select=katdal_select,
                                uvblavg_params=uvblavg_args,
                                mfimage_params=mfimage_args,
                                nvispio=args.nvispio)

    # Execute it
    metadata = pipeline.execute()

    # Create QA products if images were created
    if metadata:
        make_pbeam_images(metadata, outputdir, WRITE_TAG)
        make_qa_report(metadata, outputdir, WRITE_TAG)
        organise_qa_output(metadata, outputdir, WRITE_TAG)

        # Remove the writing tag from the output directory
        os.rename(work_outputdir, outputdir)
    else:
        os.rmdir(work_outputdir)
コード例 #5
0
    def test_gains_export(self):
        """Check l2 export to telstate"""
        nchan = 128
        nif = 4
        dump_period = 1.0
        centre_freq = 1200.e6
        bandwidth = 100.e6
        solPint = dump_period / 2.
        solAint = dump_period
        AP_telstate = 'product_GAMP_PHASE'
        P_telstate = 'product_GPHASE'

        spws = [{'centre_freq': centre_freq,
                 'num_chans': nchan,
                 'channel_width': bandwidth / nchan,
                 'sideband': 1,
                 'band': 'L'}]
        ka_select = {'pol': 'HH,VV', 'scans': 'track',
                     'corrprods': 'cross', 'nif': nif}
        uvblavg_params = {'maxFact': 1.0, 'avgFreq': 0,
                          'FOV': 100.0, 'maxInt': 1.e-6}
        mfimage_params = {'Niter': 50, 'FOV': 0.1,
                          'xCells': 5., 'yCells': 5.,
                          'doGPU': False, 'Robust': -1.5,
                          'minFluxPSC': 0.1, 'solPInt': solPint / 60.,
                          'solPMode': 'P', 'minFluxASC': 0.1,
                          'solAInt': solAint / 60., 'maxFBW': 0.02}

        # Simulate a '10Jy' source at the phase center
        cat = katpoint.Catalogue()
        cat.add(katpoint.Target(
            "Alberich lord of the Nibelungs, radec, 20.0, -30.0, (856. 1712. 1. 0. 0.)"))

        telstate = TelescopeState()

        # Set up a scratch space in /tmp
        fd = kc.get_config()['fitsdirs']
        fd += [(None, '/tmp/FITS')]
        kc.set_config(cb_id='CBID', fitsdirs=fd)
        setup_aips_disks()

        scan = [('track', 4, cat.targets[0])]

        # Construct a simulated dataset with our
        # point source at the centre of the field
        ds = MockDataSet(timestamps={'start_time': 0.0, 'dump_period': dump_period},
                         subarrays=DEFAULT_SUBARRAYS,
                         spws=spws,
                         dumps=scan,
                         vis=partial(vis, sources=cat),
                         weights=weights,
                         flags=flags)

        # Try one round of phase only self-cal & Amp+Phase self-cal
        mfimage_params['maxPSCLoop'] = 1
        mfimage_params['maxASCLoop'] = 1

        # Run the pipeline
        pipeline = pipeline_factory('online', ds, telstate, katdal_select=ka_select,
                                    uvblavg_params=uvblavg_params,
                                    mfimage_params=mfimage_params)
        pipeline.execute()

        ts = telstate.view('selfcal')
        # Check what we have in telstate agrees with what we put in
        self.assertEqual(len(ts['antlist']), len(ANTENNA_DESCRIPTIONS))
        self.assertEqual(ts['bandwidth'], bandwidth)
        self.assertEqual(ts['n_chans'], nif)
        pol_ordering = [pol[0] for pol in sorted(CORR_ID_MAP, key=CORR_ID_MAP.get)
                        if pol[0] == pol[1]]
        self.assertEqual(ts['pol_ordering'], pol_ordering)
        if_width = bandwidth / nif
        center_if = nif // 2
        start_freq = centre_freq - (bandwidth / 2.)
        self.assertEqual(ts['center_freq'], start_freq + if_width * (center_if + 0.5))

        self.assertIn(ts.join('selfcal', P_telstate), ts.keys())
        self.assertIn(ts.join('selfcal', AP_telstate), ts.keys())

        def check_gains_timestamps(gains, expect_timestamps):
            timestamps = []
            for gain, timestamp in gains:
                np.testing.assert_array_almost_equal(np.abs(gain), 1.0, decimal=3)
                np.testing.assert_array_almost_equal(np.angle(gain), 0.0)
                timestamps.append(timestamp)
            np.testing.assert_array_almost_equal(timestamps, expect_timestamps, decimal=1)

        # Check phase-only gains and timestamps
        P_times = np.arange(solPint, ds.end_time.secs, 2. * solPint)
        check_gains_timestamps(ts.get_range(P_telstate, st=0), P_times)
        # Check Amp+Phase gains
        AP_times = np.arange(solAint, ds.end_time.secs, 2. * solAint)
        check_gains_timestamps(ts.get_range(AP_telstate, st=0), AP_times)

        # Check with no Amp+Phase self-cal
        mfimage_params['maxASCLoop'] = 0
        telstate.clear()
        pipeline = pipeline_factory('online', ds, telstate, katdal_select=ka_select,
                                    uvblavg_params=uvblavg_params,
                                    mfimage_params=mfimage_params)
        pipeline.execute()
        self.assertIn(telstate.join('selfcal', P_telstate), ts.keys())
        self.assertNotIn(telstate.join('selfcal', AP_telstate), ts.keys())

        # Check with no self-cal
        mfimage_params['maxPSCLoop'] = 0
        telstate.clear()
        pipeline = pipeline_factory('online', ds, telstate, katdal_select=ka_select,
                                    uvblavg_params=uvblavg_params,
                                    mfimage_params=mfimage_params)
        pipeline.execute()
        self.assertNotIn(telstate.join('selfcal', P_telstate), ts.keys())
        self.assertNotIn(telstate.join('selfcal', AP_telstate), ts.keys())

        # Cleanup workspace
        shutil.rmtree(fd[-1][1])
コード例 #6
0
    def test_cc_export(self):
        """Check CC models returned by MFImage
        """
        nchan = 128

        spws = [{'centre_freq': .856e9 + .856e9 / 2.,
                 'num_chans': nchan,
                 'channel_width': .856e9 / nchan,
                 'sideband': 1,
                 'band': 'L'}]

        katdal_select = {'pol': 'HH,VV', 'scans': 'track',
                         'corrprods': 'cross'}
        uvblavg_params = {'FOV': 0.2, 'avgFreq': 0,
                          'chAvg': 1, 'maxInt': 2.0}

        cat = katpoint.Catalogue()
        cat.add(katpoint.Target("Amfortas, radec, 0.0, -90.0, (856. 1712. 1. 0. 0.)"))
        cat.add(katpoint.Target("Klingsor, radec, 0.0, 0.0, (856. 1712. 2. -0.7 0.1)"))
        cat.add(katpoint.Target("Kundry, radec, 100.0, -35.0, (856. 1712. -1.0 1. -0.1)"))

        ts = TelescopeState()

        # Set up a scratch space in /tmp
        fd = kc.get_config()['fitsdirs']
        fd += [(None, '/tmp/FITS')]
        kc.set_config(cb_id='CBID', fitsdirs=fd)

        setup_aips_disks()

        # Point sources with various flux models
        for targ in cat:
            scans = [('track', 5, targ)]
            ds = MockDataSet(timestamps={'start_time': 1.0, 'dump_period': 4.0},
                             subarrays=DEFAULT_SUBARRAYS,
                             spws=spws,
                             dumps=scans,
                             vis=partial(vis, sources=[targ]),
                             weights=weights,
                             flags=flags)

            # 100 clean components
            mfimage_params = {'Niter': 100, 'maxFBW': 0.05,
                              'FOV': 0.1, 'xCells': 5.,
                              'yCells': 5., 'doGPU': False}

            pipeline = pipeline_factory('online', ds, ts, katdal_select=katdal_select,
                                        uvblavg_params=uvblavg_params,
                                        mfimage_params=mfimage_params)
            pipeline.execute()

            # Get the fitted CCs from telstate
            fit_cc = ts.get('target0_clean_components')
            ts.delete('target0_clean_components')

            all_ccs = katpoint.Catalogue(fit_cc['components'])
            # Should have one merged and fitted component
            self.assertEqual(len(all_ccs), 1)

            cc = all_ccs.targets[0]
            out_fluxmodel = cc.flux_model
            in_fluxmodel = targ.flux_model

            # Check the flux densities of the flux model in the fitted CC's
            test_freqs = np.linspace(out_fluxmodel.min_freq_MHz, out_fluxmodel.max_freq_MHz, 5)
            in_flux = in_fluxmodel.flux_density(test_freqs)
            out_flux = out_fluxmodel.flux_density(test_freqs)
            np.testing.assert_allclose(out_flux, in_flux, rtol=1.e-3)

        # A field with some off axis sources to check positions
        offax_cat = katpoint.Catalogue()
        offax_cat.add(katpoint.Target("Titurel, radec, 100.1, -35.05, (856. 1712. 1.1 0. 0.)"))
        offax_cat.add(katpoint.Target("Gurmenanz, radec, 99.9, -34.95, (856. 1712. 1. 0. 0.)"))

        scans = [('track', 5, cat.targets[2])]
        ds = MockDataSet(timestamps={'start_time': 1.0, 'dump_period': 4.0},
                         subarrays=DEFAULT_SUBARRAYS,
                         spws=spws,
                         dumps=scans,
                         vis=partial(vis, sources=offax_cat),
                         weights=weights,
                         flags=flags)

        # Small number of CC's and high gain (not checking flux model)
        mfimage_params['Niter'] = 4
        mfimage_params['FOV'] = 0.2
        mfimage_params['Gain'] = 0.5
        mfimage_params['Robust'] = -5

        pipeline = pipeline_factory('online', ds, ts, katdal_select=katdal_select,
                                    uvblavg_params=uvblavg_params,
                                    mfimage_params=mfimage_params)
        pipeline.execute()
        fit_cc = ts.get('target0_clean_components')
        ts.delete('target0_clean_components')
        all_ccs = katpoint.Catalogue(fit_cc['components'])
        # We should have 2 merged clean components for two source positions
        self.assertEqual(len(all_ccs), 2)

        # Check the positions of the clean components
        # These will be ordered by decreasing flux density of the inputs
        # Position should be accurate to within a 5" pixel
        delta_dec = np.deg2rad(5./3600.)
        for model, cc in zip(offax_cat.targets, all_ccs.targets):
            delta_ra = delta_dec/np.cos(model.radec()[1])
            self.assertAlmostEqual(cc.radec()[0], model.radec()[0], delta=delta_ra)
            self.assertAlmostEqual(cc.radec()[1], model.radec()[1], delta=delta_dec)

        # Empty the scratch space
        shutil.rmtree(fd[-1][1])
コード例 #7
0
    def test_offline_pipeline(self):
        """
        Tests that a run of the offline continuum pipeline executes.
        """

        # Create Mock dataset and wrap it in a KatdalAdapter
        ds = MockDataSet(timestamps=DEFAULT_TIMESTAMPS,
                         subarrays=DEFAULT_SUBARRAYS,
                         spws=self.spws,
                         dumps=self.scans)

        # Dummy CB_ID and Product ID and temp fits and aips disks
        fd = kc.get_config()['fitsdirs']
        fd += [(None, os.path.join(os.sep, 'tmp', 'FITS'))]
        kc.set_config(output_id='OID', cb_id='CBID', fitsdirs=fd)

        setup_aips_disks()

        # Create and run the pipeline
        pipeline = pipeline_factory('offline', ds,
                                    katdal_select=self.select,
                                    uvblavg_params=self.uvblavg_params,
                                    mfimage_params=self.mfimage_params,
                                    clobber=CLOBBER.difference({'merge'}))

        pipeline.execute()

        # Check that output FITS files exist and have the right names
        # Now check for files
        cfg = kc.get_config()
        cb_id = cfg['cb_id']
        out_id = cfg['output_id']
        fits_area = cfg['fitsdirs'][-1][1]

        out_strings = [cb_id, out_id, self.target_name, IMG_CLASS]
        filename = '_'.join(filter(None, out_strings)) + '.fits'
        filepath = os.path.join(fits_area, filename)
        assert os.path.isfile(filepath)
        _check_fits_headers(filepath)

        # Remove the tmp/FITS dir
        shutil.rmtree(fits_area)

        ds = MockDataSet(timestamps=DEFAULT_TIMESTAMPS,
                         subarrays=DEFAULT_SUBARRAYS,
                         spws=self.spws,
                         dumps=self.scans)

        setup_aips_disks()

        # Create and run the pipeline (Reusing the previous data)
        pipeline = pipeline_factory('offline', ds,
                                    katdal_select=self.select,
                                    uvblavg_params=self.uvblavg_params,
                                    mfimage_params=self.mfimage_params,
                                    reuse=True,
                                    clobber=CLOBBER)

        metadata = pipeline.execute()
        assert_in(filename, metadata['FITSImageFilename'])
        assert os.path.isfile(filepath)
        _check_fits_headers(filepath)

        # Remove FITS temporary area
        shutil.rmtree(fits_area)
コード例 #8
0
def main():
    parser = create_parser()
    args = parser.parse_args()
    configure_logging(args)
    log.info("Reading data with applycal=%s", args.applycal)
    katdata = katdal.open(args.katdata,
                          applycal=args.applycal,
                          **args.open_args)

    # Apply the supplied mask to the flags
    if args.mask:
        apply_user_mask(katdata, args.mask)

    # Set up katdal selection based on arguments
    kat_select = {'pol': args.pols, 'nif': args.nif}

    if args.targets:
        kat_select['targets'] = args.targets
    if args.channels:
        start_chan, end_chan = args.channels
        kat_select['channels'] = slice(start_chan, end_chan)

    # Command line katdal selection overrides command line options
    kat_select = recursive_merge(args.select, kat_select)

    # Get band and determine default .yaml files
    band = katdata.spectral_windows[katdata.spw].band
    uvblavg_parm_file = args.uvblavg_config
    if not uvblavg_parm_file:
        uvblavg_parm_file = os.path.join(os.sep, "obitconf",
                                         f"uvblavg_{band}.yaml")
    log.info('UVBlAvg parameter file for %s-band: %s', band, uvblavg_parm_file)
    mfimage_parm_file = args.mfimage_config
    if not mfimage_parm_file:
        mfimage_parm_file = os.path.join(os.sep, "obitconf",
                                         f"mfimage_{band}.yaml")
    log.info('MFImage parameter file for %s-band: %s', band, mfimage_parm_file)

    # Get defaults for uvblavg and mfimage and merge user supplied ones
    uvblavg_args = get_and_merge_args(uvblavg_parm_file, args.uvblavg)
    mfimage_args = get_and_merge_args(mfimage_parm_file, args.mfimage)

    # Grab the cal refant from the katdal dataset and default to
    # it if it is available and hasn't been set by the user.
    ts = katdata.source.telstate
    refant = ts.get('cal_refant')
    if refant is not None and 'refAnt' not in mfimage_args:
        mfimage_args['refAnt'] = aips_ant_nr(refant)

    # Try and always average down to 1024 channels if the user
    # hasn't specified something else
    num_chans = len(katdata.channels)
    factor = num_chans // 1024
    if 'avgFreq' not in uvblavg_args:
        if factor > 1:
            uvblavg_args['avgFreq'] = 1
            uvblavg_args['chAvg'] = factor

    # Get the default config.
    dc = kc.get_config()

    # capture_block_id is used to generate AIPS disk filenames
    capture_block_id = katdata.obs_params['capture_block_id']

    if args.reuse:
        # Set up AIPS disk from specified directory
        if os.path.exists(args.reuse):
            aipsdirs = [(None, args.reuse)]
            log.info('Re-using AIPS data area: %s', aipsdirs[0][1])
            reuse = True
        else:
            msg = "AIPS disk at '%s' does not exist." % (args.reuse)
            log.exception(msg)
            raise IOError(msg)
    else:
        # Set up aipsdisk configuration from args.workdir
        aipsdirs = [(None,
                     os.path.join(args.workdir,
                                  capture_block_id + '_aipsdisk'))]
        log.info('Using AIPS data area: %s', aipsdirs[0][1])
        reuse = False

    # Set up output configuration from args.outputdir
    fitsdirs = dc['fitsdirs']

    # Append outputdir to fitsdirs
    fitsdirs += [(None, args.outputdir)]
    log.info('Using output data area: %s', args.outputdir)

    kc.set_config(aipsdirs=aipsdirs,
                  fitsdirs=fitsdirs,
                  output_id='',
                  cb_id=capture_block_id)

    setup_aips_disks()

    pipeline = pipeline_factory('offline',
                                katdata,
                                katdal_select=kat_select,
                                uvblavg_params=uvblavg_args,
                                mfimage_params=mfimage_args,
                                nvispio=args.nvispio,
                                clobber=args.clobber,
                                prtlv=args.prtlv,
                                reuse=reuse)

    # Execute it
    pipeline.execute()