コード例 #1
0
def save_callback(event):
    # Save pointing model to file
    outfile = file(opts.outfilebase + '.csv', 'w')
    # The original pointing model description string was comma-separated
    outfile.write(new_model.description.replace(" ", ", "))
    outfile.close()
    logger.debug("Saved %d-parameter pointing model to '%s'" % (len(new_model), opts.outfilebase + '.csv'))
    # Turn data recarray into list of dicts and add residuals to the mix
    extended_data = []
    for n in range(len(data)):
        rec_dict = dict(zip(data.dtype.names, data[n]))
        rec_dict['keep'] = int(keep[n])
        rec_dict['old_residual_xel'] = rad2deg(old.residual_xel[n])
        rec_dict['old_residual_el'] = rad2deg(old.residual_el[n])
        rec_dict['new_residual_xel'] = rad2deg(new.residual_xel[n])
        rec_dict['new_residual_el'] = rad2deg(new.residual_el[n])
        extended_data.append(rec_dict)
    # Format the data similar to analyse_point_source_scans output CSV file, with four new columns at the end
    fields = '%(dataset)s, %(target)s, %(timestamp_ut)s, %(azimuth).7f, %(elevation).7f, ' \
             '%(delta_azimuth).7f, %(delta_azimuth_std).7f, %(delta_elevation).7f, %(delta_elevation_std).7f, ' \
             '%(data_unit)s, %(beam_height_I).7f, %(beam_height_I_std).7f, %(beam_width_I).7f, ' \
             '%(beam_width_I_std).7f, %(baseline_height_I).7f, %(baseline_height_I_std).7f, %(refined_I).0f, ' \
             '%(beam_height_HH).7f, %(beam_width_HH).7f, %(baseline_height_HH).7f, %(refined_HH).0f, ' \
             '%(beam_height_VV).7f, %(beam_width_VV).7f, %(baseline_height_VV).7f, %(refined_VV).0f, ' \
             '%(frequency).7f, %(flux).4f, %(temperature).2f, %(pressure).2f, %(humidity).2f, %(wind_speed).2f, ' \
             '%(keep)d, %(old_residual_xel).7f, %(old_residual_el).7f, %(new_residual_xel).7f, %(new_residual_el).7f\n'
    field_names = [name.partition(')')[0] for name in fields[2:].split(', %(')]
    # Save residual data and flags to file
    outfile2 = file(opts.outfilebase + '_data.csv', 'w')
    outfile2.write('# antenna = %s\n' % antenna.description)
    outfile2.write(', '.join(field_names) + '\n')
    outfile2.writelines([fields % rec for rec in extended_data])
    outfile2.close()
    save_button.color = '0.85'
    save_button.hovercolor = '0.95'
コード例 #2
0
    def _extract_location_from_katdata(self):
        self.metadata["DecRa"] = []
        self.metadata["ElAz"] = []

        f = self._katdata
        f.select(scans="track,scan")
        f.select(ants=f.ref_ant)

        for i, scan, target in f.scans():
            f.select(scans=i)
            t = f.catalogue.targets[f.target_indices[0]]
            if (t.body_type == 'radec'):
                ra, dec = t.radec()
                ra, dec = katpoint.rad2deg(ra), katpoint.rad2deg(dec)
                self.metadata["DecRa"].append(
                    "%f, %f" % (dec, katpoint.wrap_angle(ra, 360)))

            elif t.body_type == 'azel':
                az, el = t.azel()
                az, el = katpoint.rad2deg(az), katpoint.rad2deg(el)
                if -90 <= el <= 90:
                    self.metadata["ElAz"].append(
                        "%f, %f" % (el, katpoint.wrap_angle(az, 360)))
                else:
                    self.metadata["ElAz"].append(
                        "%f, %f" %
                        ((np.clip(el, -90, 90)), katpoint.wrap_angle(az, 360)))
コード例 #3
0
ファイル: fit_pointing_model.py プロジェクト: bongani-ska/RTS
def save_callback(event):
    # Save pointing model to file
    outfile = file(opts.outfilebase + '.csv', 'w')
    outfile.write(new_model.description)
    outfile.close()
    logger.debug("Saved %d-parameter pointing model to '%s'" %
                 (len(new_model.params), opts.outfilebase + '.csv'))
    # Turn data recarray into list of dicts and add residuals to the mix
    extended_data = []
    for n in range(len(data)):
        rec_dict = dict(zip(data.dtype.names, data[n]))
        rec_dict['keep'] = int(keep[n])
        rec_dict['old_residual_xel'] = rad2deg(old.residual_xel[n])
        rec_dict['old_residual_el'] = rad2deg(old.residual_el[n])
        rec_dict['new_residual_xel'] = rad2deg(new.residual_xel[n])
        rec_dict['new_residual_el'] = rad2deg(new.residual_el[n])
        extended_data.append(rec_dict)
    # Format the data similar to analyse_point_source_scans output CSV file, with four new columns at the end
    fields = '%(dataset)s, %(target)s, %(timestamp_ut)s, %(azimuth).7f, %(elevation).7f, ' \
             '%(delta_azimuth).7f, %(delta_azimuth_std).7f, %(delta_elevation).7f, %(delta_elevation_std).7f, ' \
             '%(data_unit)s, %(beam_height_I).7f, %(beam_height_I_std).7f, %(beam_width_I).7f, ' \
             '%(beam_width_I_std).7f, %(baseline_height_I).7f, %(baseline_height_I_std).7f, %(refined_I).0f, ' \
             '%(beam_height_HH).7f, %(beam_width_HH).7f, %(baseline_height_HH).7f, %(refined_HH).0f, ' \
             '%(beam_height_VV).7f, %(beam_width_VV).7f, %(baseline_height_VV).7f, %(refined_VV).0f, ' \
             '%(frequency).7f, %(flux).4f, %(temperature).2f, %(pressure).2f, %(humidity).2f, %(wind_speed).2f, ' \
             '%(keep)d, %(old_residual_xel).7f, %(old_residual_el).7f, %(new_residual_xel).7f, %(new_residual_el).7f\n'
    field_names = [name.partition(')')[0] for name in fields[2:].split(', %(')]
    # Save residual data and flags to file
    outfile2 = file(opts.outfilebase + '_data.csv', 'w')
    outfile2.write('# antenna = %s\n' % antenna.description)
    outfile2.write(', '.join(field_names) + '\n')
    outfile2.writelines([fields % rec for rec in extended_data])
    outfile2.close()
    save_button.color = '0.85'
    save_button.hovercolor = '0.95'
コード例 #4
0
 def update(self, timestamp):
     elapsed_time = timestamp - self._last_update if self._last_update else 0.0
     self._last_update = timestamp
     if self.mode not in ('POINT', 'SCAN', 'STOW'):
         return
     az, el = self.pos_actual_scan_azim, self.pos_actual_scan_elev
     target = construct_azel_target(deg2rad(az), deg2rad(90.0)) \
              if self.mode == 'STOW' else self._target
     if not target:
         return
     requested_az, requested_el = target.azel(timestamp, self.ant)
     requested_az = rad2deg(wrap_angle(requested_az))
     requested_el = rad2deg(requested_el)
     delta_az = wrap_angle(requested_az - az, period=360.)
     delta_el = requested_el - el
     # Truncate velocities to slew rate limits and update position
     max_delta_az = self.max_slew_azim_dps * elapsed_time
     max_delta_el = self.max_slew_elev_dps * elapsed_time
     az += min(max(delta_az, -max_delta_az), max_delta_az)
     el += min(max(delta_el, -max_delta_el), max_delta_el)
     # Truncate coordinates to antenna limits
     az = min(max(az, self.real_az_min_deg), self.real_az_max_deg)
     el = min(max(el, self.real_el_min_deg), self.real_el_max_deg)
     # Check angular separation to determine lock
     dish = construct_azel_target(deg2rad(az), deg2rad(el))
     error = rad2deg(target.separation(dish, timestamp, self.ant))
     self.lock = error < self.lock_threshold
     # Update position sensors
     self.pos_request_scan_azim = requested_az
     self.pos_request_scan_elev = requested_el
     self.pos_actual_scan_azim = az
     self.pos_actual_scan_elev = el
コード例 #5
0
def LoadHDF5(HDF5Filename, header=False):
    try:
        d = scape.DataSet(HDF5Filename, baseline=opts.baseline)
    except ValueError:
        print "WARNING:THIS FILE", HDF5Filename.split(
            '/'
        )[-1], "IS CORRUPTED AND SCAPE WILL NOT PROCESS IT, YOU MAY NEED TO REAUGMENT IT,BUT ITS AN EXPENSIVE TASK..!!"
    else:
        print "SUCCESSFULLY LOADED: Wellcome to scape Library and scape is busy processing your request"

        lo_freq = 4200.0 + d.freqs[len(d.freqs) / 2.0]

        # try to check all the rfi channels across all the channels
        rfi_chan_across_all = d.identify_rfi_channels()

        d = d.select(freqkeep=range(100, 420))
        # rfi channels across fringe finder channels ( i.e frequancy range around 100 to 420)
        rfi_channels = d.identify_rfi_channels()
        freqs = d.freqs
        sky_frequency = d.freqs[rfi_channels]
        ant = d.antenna.name
        data_filename = os.path.splitext(
            os.path.basename(HDF5Filename))[0] + '.h5'
        # obs_date = os.path.splitext(os.path.basename(HDF5Filename))[0]
        #date = time.ctime(float(obs_date))

        for compscan in d.compscans:
            azimuth = np.hstack(
                [scan.pointing['az'] for scan in compscan.scans])
            elevation = np.hstack(
                [scan.pointing['el'] for scan in compscan.scans])
            compscan_times = np.hstack(
                [scan.timestamps for scan in compscan.scans])
            compscan_start_time = np.hstack(
                [scan.timestamps[0] for scan in compscan.scans])
            compscan_end_time = np.hstack(
                [scan.timestamps[-1] for scan in compscan.scans])
            middle_time = np.median(compscan_times, axis=None)
            obs_date = katpoint.Timestamp(middle_time)
            middle_start_time = np.median(compscan_start_time)
            middle_end_time = np.median(compscan_end_time)
            end_time = katpoint.Timestamp(middle_end_time)
            min_compscan_az = katpoint.rad2deg(azimuth.min())
            max_compscan_az = katpoint.rad2deg(azimuth.max())
            min_compscan_el = katpoint.rad2deg(elevation.min())
            max_compscan_el = katpoint.rad2deg(elevation.max())
            start_time = katpoint.Timestamp(middle_start_time)
            requested_azel = compscan.target.azel(middle_time)
            #ant_az = katpoint.rad2deg(np.array(requested_azel[0]))
            #ant_el = katpoint.rad2deg(np.array(requested_azel[1]))
            target = compscan.target.name

            f = file(opts.outfilebase + '.csv', 'a')
            for index in range(0, len(rfi_channels)):
                rfi_chan = rfi_channels[index] + 100
                rfi_freq = freqs[rfi_channels[index]]
                f.write('%s, %s, %s, %s, %s,%f, %f,%f,%f, %f, %d, %f\n' % (data_filename,start_time, end_time, ant,target,min_compscan_az,max_compscan_az,\
                min_compscan_el, max_compscan_el,lo_freq, rfi_chan, rfi_freq))
            f.close()
コード例 #6
0
def check_target(OVST, target, tmstmp=None, check=True):
    '''
    :param tar:         str or object of class Target
                        if string: searches for the target in catalogue
    :param antennas:    list
                        list of antenna objects of class Antenna
    :param catalogue:   Catalogue
    :param tmstmp:      Timestamp
    :return:            list with position tuples
                        [(az1, el1), (az2, el2), ...]
    '''
    antennas = OVST.active_antennas
    catalogue = OVST.Catalogue

    azel = []
    if isinstance(target, Target):
        target = target
    elif isinstance(
            target, str
    ) and ',' in target:  # Check if target has format: e.g. 'azel, 30, 60'
        target = Target(target)
    elif isinstance(target, str):
        target = catalogue[target]
        if not target:
            raise ValueError("Target not in Catalogue")

    if isinstance(tmstmp, str):
        if tmstmp and len(tmstmp) == 5:
            tmstmp += ':00'
        if tmstmp and len(tmstmp) == 8:
            tmstmp = str(datetime.now().date()) + ' ' + tmstmp

    if isinstance(tmstmp, (int, float)):
        tmstmp = Timestamp(tmstmp)

    if not tmstmp:
        tmstmp = Timestamp()

    for antenna in antennas:
        ae = target.azel(timestamp=tmstmp, antenna=antenna)
        azel.append([rad2deg(ae[0]), rad2deg(ae[1])])

    az = [item[0] for item in azel]
    el = [item[1] for item in azel]
    if check:
        if all((OVST.az_limit[1] - 2 < i < OVST.az_limit[0] + 2
                for i in az)) or all(i < OVST.el_limit[0] for i in el):
            raise LookupError(
                'target cannot get focused at % s (target at azimuth %.2f and elevation %.2f).\n '
                'Allowed limits: az not in range of 150-173 and elevation > 25'
                % (tmstmp.local()[11:19], azel[0][0], azel[0][1]))

    return azel  # format: [(az1, el1), (az2, el2), ...]
コード例 #7
0
def update(fig):
    """Fit new pointing model and update plots."""
    # Perform early redraw to improve interactivity of clicks (which typically change state of target dots)
    # Target state: 0 = flagged, 1 = unflagged, 2 = highlighted
    target_state = keep * ((target_index == fig.highlighted_target) + 1)
    # Specify colours of flagged, unflagged and highlighted dots, respectively, as RGBA tuples
    dot_colors = np.choose(target_state, np.atleast_3d(np.vstack([(1,1,1,1), (0,0,1,1), (1,0,0,1)]))).T
    for ax in fig.axes[:7]:
        ax.dots.set_facecolors(dot_colors)
    fig.canvas.draw()

    # Fit new pointing model and update results
    params, sigma_params = new_model.fit(az[keep], el[keep], measured_delta_az[keep], measured_delta_el[keep],
                                         std_delta_az[keep], std_delta_el[keep], enabled_params)
    new.update(new_model)

    # Update rest of figure
    fig.texts[3].set_text("$\chi^2$ = %.1f" % new.chi2)
    fig.texts[4].set_text("all sky rms = %.3f' (robust %.3f')" % (new.sky_rms, new.robust_sky_rms))
    new.metrics(target_index == fig.highlighted_target)
    fig.texts[5].set_text("target sky rms = %.3f' (robust %.3f')" % (new.sky_rms, new.robust_sky_rms))
    new.metrics(keep)
    fig.texts[-1].set_text(unique_targets[fig.highlighted_target])
    # Update model parameter strings
    for p, param in enumerate(display_params):
        fig.texts[2*p + 6].set_text(param_to_str(new_model, param) if enabled_params[param] else '')
        # HACK to convert sigmas to arcminutes, but not for P9 and P12 (which are scale factors)
        # This functionality should really reside inside the PointingModel class
        std_param = rad2deg(sigma_params[param]) * 60. if param not in [8, 11] else sigma_params[param]
        std_param_str = ("%.2f'" % std_param) if param not in [8, 11] else ("%.0e" % std_param)
        fig.texts[2*p + 7].set_text(std_param_str if enabled_params[param] and opts.use_stats else '')
        # Turn parameter string bold if it changed significantly from old value
        if np.abs(params[param] - old_model.values()[param]) > 3.0 * sigma_params[param]:
            fig.texts[2*p + 6].set_weight('bold')
            fig.texts[2*p + 7].set_weight('bold')
        else:
            fig.texts[2*p + 6].set_weight('normal')
            fig.texts[2*p + 7].set_weight('normal')
    daz_az, del_az, daz_el, del_el, quiver, before, after = fig.axes[:7]
    # Update quiver plot
    quiver_scale = 0.1 * fig.quiver_scale_slider.val * np.pi / 6 / deg2rad(old.robust_sky_rms / 60.)
    quiver.quiv.set_segments(quiver_segments(new.residual_az, new.residual_el, quiver_scale))
    quiver.quiv.set_color(np.choose(keep, np.atleast_3d(np.vstack([(0.3,0.3,0.3,0.2), (0.3,0.3,0.3,1)]))).T)
    # Update residual plots
    daz_az.dots.set_offsets(np.c_[rad2deg(az), rad2deg(new.residual_xel) * 60.])
    del_az.dots.set_offsets(np.c_[rad2deg(az), rad2deg(new.residual_el) * 60.])
    daz_el.dots.set_offsets(np.c_[rad2deg(el), rad2deg(new.residual_xel) * 60.])
    del_el.dots.set_offsets(np.c_[rad2deg(el), rad2deg(new.residual_el) * 60.])
    after.dots.set_offsets(np.c_[np.arctan2(new.residual_el, new.residual_xel), new.abs_sky_error])
    resid_lim = 1.2 * max(new.abs_sky_error.max(), old.abs_sky_error.max())
    daz_az.set_ylim(-resid_lim, resid_lim)
    del_az.set_ylim(-resid_lim, resid_lim)
    daz_el.set_ylim(-resid_lim, resid_lim)
    del_el.set_ylim(-resid_lim, resid_lim)
    before.set_ylim(0, resid_lim)
    after.set_ylim(0, resid_lim)
    # Redraw the figure
    fig.canvas.draw()
コード例 #8
0
def LoadHDF5(HDF5Filename, header=False):
    try:
        d = scape.DataSet(HDF5Filename,baseline=opts.baseline)
    except ValueError:
        print "WARNING:THIS FILE",HDF5Filename.split('/')[-1], "IS CORRUPTED AND SCAPE WILL NOT PROCESS IT, YOU MAY NEED TO REAUGMENT IT,BUT ITS AN EXPENSIVE TASK..!!"
    else:
        print "SUCCESSFULLY LOADED: Wellcome to scape Library and scape is busy processing your request"

        lo_freq = 4200.0 + d.freqs[len(d.freqs)/2.0]

        # try to check all the rfi channels across all the channels
        rfi_chan_across_all = d.identify_rfi_channels()

        d = d.select(freqkeep=range(100,420))
        # rfi channels across fringe finder channels ( i.e frequancy range around 100 to 420)
        rfi_channels = d.identify_rfi_channels()
        freqs = d.freqs
        sky_frequency = d.freqs[rfi_channels]
        ant = d.antenna.name
        data_filename = os.path.splitext(os.path.basename(HDF5Filename))[0]+'.h5'
        # obs_date = os.path.splitext(os.path.basename(HDF5Filename))[0]
        #date = time.ctime(float(obs_date))

        for compscan in d.compscans:
            azimuth = np.hstack([scan.pointing['az'] for scan in compscan.scans])
            elevation = np.hstack([scan.pointing['el'] for scan in compscan.scans])
            compscan_times = np.hstack([scan.timestamps for scan in compscan.scans])
            compscan_start_time = np.hstack([scan.timestamps[0] for scan in compscan.scans])
            compscan_end_time = np.hstack([scan.timestamps[-1] for scan in compscan.scans])
            middle_time = np.median(compscan_times, axis=None)
            obs_date = katpoint.Timestamp(middle_time)
            middle_start_time = np.median(compscan_start_time)
            middle_end_time = np.median(compscan_end_time)
            end_time = katpoint.Timestamp(middle_end_time)
            min_compscan_az = katpoint.rad2deg(azimuth.min())
            max_compscan_az = katpoint.rad2deg(azimuth.max())
            min_compscan_el = katpoint.rad2deg(elevation.min())
            max_compscan_el = katpoint.rad2deg(elevation.max())
            start_time = katpoint.Timestamp(middle_start_time)
            requested_azel = compscan.target.azel(middle_time)
            #ant_az = katpoint.rad2deg(np.array(requested_azel[0]))
            #ant_el = katpoint.rad2deg(np.array(requested_azel[1]))
            target = compscan.target.name

            f = file(opts.outfilebase + '.csv', 'a')
            for index in range(0,len(rfi_channels)):
                rfi_chan = rfi_channels[index] + 100
                rfi_freq = freqs[rfi_channels[index]]
                f.write('%s, %s, %s, %s, %s,%f, %f,%f,%f, %f, %d, %f\n' % (data_filename,start_time, end_time, ant,target,min_compscan_az,max_compscan_az,\
                min_compscan_el, max_compscan_el,lo_freq, rfi_chan, rfi_freq))
            f.close()
コード例 #9
0
def metrics(model, az, el, measured_delta_az, measured_delta_el, std_delta_az,
            std_delta_el):
    """Determine new residuals and sky RMS from pointing model."""
    model_delta_az, model_delta_el = model.offset(az, el)
    residual_az = measured_delta_az - model_delta_az
    residual_el = measured_delta_el - model_delta_el
    residual_xel = residual_az * np.cos(el)
    abs_sky_error = rad2deg(np.sqrt(residual_xel**2 + residual_el**2)) * 3600.
    ###### On the calculation of all-sky RMS #####
    # Assume the el and cross-el errors have zero mean, are distributed normally, and are uncorrelated
    # They are therefore described by a 2-dimensional circular Gaussian pdf with zero mean and *per-component*
    # standard deviation of sigma
    # The absolute sky error (== Euclidean length of 2-dim error vector) then has a Rayleigh distribution
    # The RMS sky error has a mean value of sqrt(2) * sigma, since each squared error term is the sum of
    # two squared Gaussian random values, each with an expected value of sigma^2.

    sky_rms = np.sqrt(np.mean(abs_sky_error**2))
    # A more robust estimate of the RMS sky error is obtained via the median of the Rayleigh distribution,
    # which is sigma * sqrt(log(4)) -> convert this to the RMS sky error = sqrt(2) * sigma
    robust_sky_rms = np.median(abs_sky_error) * np.sqrt(2. / np.log(4.))
    # The chi^2 value is what is actually optimised by the least-squares fitter (evaluated on the training set)
    chi2 = np.sum(
        ((residual_xel / std_delta_az)**2 + (residual_el / std_delta_el)**2))
    text = []
    #text.append("$\chi^2$ = %g " % chi2)
    text.append("All sky RMS = %.3f\" (robust %.3f\") " %
                (sky_rms, robust_sky_rms))
    return sky_rms, robust_sky_rms, chi2, text
コード例 #10
0
 def update(self, model):
     """Determine new residuals and sky RMS from pointing model."""
     model_delta_az, model_delta_el = model.offset(az, el)
     self.residual_az = measured_delta_az - model_delta_az
     self.residual_el = measured_delta_el - model_delta_el
     self.residual_xel = self.residual_az * np.cos(el)
     self.abs_sky_error = rad2deg(np.sqrt(self.residual_xel ** 2 + self.residual_el ** 2)) * 60.
     self.metrics(keep)
コード例 #11
0
 def update(self, model):
     """Determine new residuals and sky RMS from pointing model."""
     model_delta_az, model_delta_el = model.offset(az, el)
     self.residual_az = measured_delta_az - model_delta_az
     self.residual_el = measured_delta_el - model_delta_el
     self.residual_xel = self.residual_az * np.cos(el)
     self.abs_sky_error = rad2deg(np.sqrt(self.residual_xel ** 2 + self.residual_el ** 2)) * 60.
     self.metrics(keep)
コード例 #12
0
def fit_primary_beams(session, data_points):
    """Fit primary beams to receptor gains obtained at various offset pointings.

    Parameters
    ----------
    session : :class:`katcorelib.observe.CaptureSession` object
        The active capture session
    data_points : dict mapping receptor index to (x, y, freq, gain, weight) seq
        Complex gains per receptor, as multiple records per offset and frequency

    Returns
    -------
    beams : dict mapping receptor name to list of :class:`BeamPatternFit`
        Fitted primary beams, per receptor and per frequency chunk

    """
    beams = {}
    # Iterate over receptors
    for a in data_points:
        data = np.rec.fromrecords(data_points[a], names='x,y,freq,gain,weight')
        data = data.reshape(-1, NUM_CHUNKS)
        ant = session.observers[a]
        # Iterate over frequency chunks but discard typically dodgy band edges
        for chunk in range(1, NUM_CHUNKS - 1):
            chunk_data = data[:, chunk]
            is_valid = np.nonzero(~np.isnan(chunk_data['gain'])
                                  & (chunk_data['weight'] > 0.))[0]
            chunk_data = chunk_data[is_valid]
            if len(chunk_data) == 0:
                continue
            expected_width = rad2deg(ant.beamwidth * lightspeed /
                                     chunk_data['freq'][0] / ant.diameter)
            # Convert power beamwidth to gain / voltage beamwidth
            expected_width = np.sqrt(2.0) * expected_width
            # XXX This assumes we are still using default ant.beamwidth of 1.22
            # and also handles larger effective dish diameter in H direction
            expected_width = (0.8 * expected_width, 0.9 * expected_width)
            beam = BeamPatternFit((0., 0.), expected_width, 1.0)
            x = np.c_[chunk_data['x'], chunk_data['y']].T
            y = chunk_data['gain']
            std_y = np.sqrt(1. / chunk_data['weight'])
            try:
                beam.fit(x, y, std_y)
            except TypeError:
                continue
            beamwidth_norm = beam.width / np.array(expected_width)
            center_norm = beam.center / beam.std_center
            user_logger.debug(
                "%s %2d %2d: height=%4.2f width=(%4.2f, %4.2f) "
                "center=(%7.2f, %7.2f)%s", ant.name, chunk, len(y),
                beam.height, beamwidth_norm[0], beamwidth_norm[1],
                center_norm[0], center_norm[1],
                ' X' if not beam.is_valid else '')
            # Store beam per frequency chunk and per receptor
            beams_freq = beams.get(ant.name, [None] * NUM_CHUNKS)
            beams_freq[chunk] = beam
            beams[ant.name] = beams_freq
    return beams
コード例 #13
0
    def _target_azel(self, target):
        """Get azimuth and elevation co-ordinates for a target at the current time.

        Parameters
        ----------
        target: katpoint.Target
            The target of interest.

        Returns
        -------
        az: float
            The azimuth co-ordinate of the target in degrees.
        el: float
            The elevation co-ordinate of the target in degrees.

        """
        az, el = target.azel(simobserver.date)
        az = katpoint.rad2deg(az)
        el = katpoint.rad2deg(el)
        return az, el
コード例 #14
0
def metrics(model,az,el,measured_delta_az, measured_delta_el ,std_delta_az ,std_delta_el,time_stamps):
    """Determine new residuals and sky RMS from pointing model."""
    model_delta_az, model_delta_el = model.offset(az, el)
    residual_az = measured_delta_az - model_delta_az
    residual_el = measured_delta_el - model_delta_el
    residual_xel  = residual_az * np.cos(el)
    abs_sky_error = rad2deg(np.sqrt(residual_xel ** 2 + residual_el ** 2))
    
    offset_az_ts = pandas.Series(rad2deg(residual_xel), pandas.to_datetime(time_stamps, unit='s'))#.asfreq(freq='1s')
    offset_el_ts = pandas.Series(rad2deg(residual_el), pandas.to_datetime(time_stamps, unit='s'))#.asfreq(freq='1s')
    offset_total_ts = pandas.Series( abs_sky_error, pandas.to_datetime(time_stamps, unit='s'))#.asfreq(freq='1s')
    
    ###### On the calculation of all-sky RMS #####
    # Assume the el and cross-el errors have zero mean, are distributed normally, and are uncorrelated
    # They are therefore described by a 2-dimensional circular Gaussian pdf with zero mean and *per-component*
    # standard deviation of sigma
    # The absolute sky error (== Euclidean length of 2-dim error vector) then has a Rayleigh distribution
    # The RMS sky error has a mean value of sqrt(2) * sigma, since each squared error term is the sum of
    # two squared Gaussian random values, each with an expected value of sigma^2.

    sky_rms = np.sqrt(np.mean(abs_sky_error ** 2))
    # A more robust estimate of the RMS sky error is obtained via the median of the Rayleigh distribution,
    # which is sigma * sqrt(log(4)) -> convert this to the RMS sky error = sqrt(2) * sigma
    robust_sky_rms = np.median(abs_sky_error) * np.sqrt(2. / np.log(4.))
    # The chi^2 value is what is actually optimised by the least-squares fitter (evaluated on the training set)
    #chi2 = np.sum(((residual_xel / std_delta_az) ** 2 + (residual_el / std_delta_el) ** 2))
    text = 'All sky RMS = %.3f\" (robust %.3f\") ' % (sky_rms*3600, robust_sky_rms*3600)
    fig = plt.figure(figsize=(10,5))
    #change_total = np.sqrt(change_el**2 + change_az**2)
    #(offset_el_ts*3600.).plot(label='Elevation',legend=True,grid=True,style='*') 
    #(offset_az_ts*3600.).plot(label='Azimuth',legend=True,grid=True,style='*')
    (offset_total_ts*3600.).plot(label='Total pointing Error',legend=True,grid=True,style='*')
    dataset_str = ' ,'.join(np.unique(offsetdata['dataset']).tolist() )
    #target_str = ' ,'.join(np.unique(offsetdata['target']).tolist() )
    plt.title("Offset for Antenna:%s Dataset:%s  \n   %s " %(ant.name,dataset_str ,text),fontsize=10)
    plt.ylabel('Offset  (arc-seconds)')
    plt.xlabel('Time (UTC)',fontsize=8)
    plt.figtext(0.89, 0.18,git_info(), horizontalalignment='right',fontsize=10)
    return fig
コード例 #15
0
def select_and_average(filename, average_time):
    # Read a file into katdal, and average the data to the prescribed averaging time
    # Returns the weather data and timestamps with the correct averaging interval
    data = katdal.open(filename)

    raw_timestamps = data.sensor.timestamps
    raw_wind_speed = data.wind_speed
    raw_temperature = data.temperature
    raw_dumptime = data.dump_period

    # Get azel of each antenna and separation of each antenna
    sun = katpoint.Target('Sun, special', antenna=data.ants[0])
    alltimestamps = data.timestamps[:]
    solar_seps = np.zeros_like(alltimestamps)
    for dumpnum, timestamp in enumerate(alltimestamps):
        azeltarget = katpoint.construct_azel_target(
            katpoint.deg2rad(data.az[dumpnum, 0]),
            katpoint.deg2rad(data.el[dumpnum, 0]))
        azeltarget.antenna = data.ants[0]
        solar_seps[dumpnum] = katpoint.rad2deg(
            azeltarget.separation(sun, timestamp))
    #Determine number of dumps to average
    num_average = max(int(np.round(average_time / raw_dumptime)), 1)

    #Array of block indices
    indices = list(
        range(min(num_average, raw_timestamps.shape[0]),
              raw_timestamps.shape[0] + 1,
              min(num_average, raw_timestamps.shape[0])))

    timestamps = np.average(np.array(np.split(raw_timestamps, indices)[:-1]),
                            axis=1)
    wind_speed = np.average(np.array(np.split(raw_wind_speed, indices)[:-1]),
                            axis=1)
    temperature = np.average(np.array(np.split(raw_temperature, indices)[:-1]),
                             axis=1)

    dump_time = raw_dumptime * num_average

    return (timestamps, alltimestamps, wind_speed, temperature, dump_time,
            solar_seps, data.ants[0])
コード例 #16
0
def referencemetrics(measured_delta_az, measured_delta_el):
    """Determine and sky RMS from pointing model."""
    text = []
    measured_delta_xel = measured_delta_az * np.cos(
        el)  # scale due to sky shape
    abs_sky_error = np.ma.array(data=measured_delta_xel, mask=False)

    for target in set(offsetdata['target']):
        keep = np.ones((len(offsetdata)), dtype=np.bool)
        for key, targetv in enumerate(offsetdata['target']):
            keep[key] = target == targetv
        abs_sky_error[keep] = rad2deg(
            np.sqrt(
                (measured_delta_xel[keep] - measured_delta_xel[keep][0])**2 +
                (measured_delta_el[keep] -
                 measured_delta_el[keep][0])**2)) * 60.
        abs_sky_error.mask[keep.nonzero()[0]
                           [0]] = True  # Mask the reference element
        text.append(
            "Test Target: '%s'  Reference RMS = %.3f' (robust %.3f')  (N=%i Data Points)"
            % (target, np.sqrt((abs_sky_error[keep]**2).mean()),
               np.ma.median(abs_sky_error[keep]) * np.sqrt(2. / np.log(4.)),
               keep.sum() - 1))

    ###### On the calculation of all-sky RMS #####
    # Assume the el and cross-el errors have zero mean, are distributed normally, and are uncorrelated
    # They are therefore described by a 2-dimensional circular Gaussian pdf with zero mean and *per-component*
    # standard deviation of sigma
    # The absolute sky error (== Euclidean length of 2-dim error vector) then has a Rayleigh distribution
    # The RMS sky error has a mean value of sqrt(2) * sigma, since each squared error term is the sum of
    # two squared Gaussian random values, each with an expected value of sigma^2.
    sky_rms = np.sqrt(np.ma.mean(abs_sky_error**2))
    #print abs_sky_error
    # A more robust estimate of the RMS sky error is obtained via the median of the Rayleigh distribution,
    # which is sigma * sqrt(log(4)) -> convert this to the RMS sky error = sqrt(2) * sigma
    robust_sky_rms = np.ma.median(abs_sky_error) * np.sqrt(2. / np.log(4.))
    text.append(
        "All Sky Reference RMS = %.3f' (robust %.3f')   (N=%i Data Points) R.T.P.4"
        % (sky_rms, robust_sky_rms, abs_sky_error.count()))
    return text
コード例 #17
0
ファイル: test_dataset.py プロジェクト: adriaanph/katdal
 def test_pointing(self):
     az, el = self.target.azel(self.timestamps, self.antennas[1])
     assert_array_equal(self.dataset.az[:, 1], rad2deg(az))
     assert_array_equal(self.dataset.el[:, 1], rad2deg(el))
     ra, dec = self.target.radec(self.timestamps, self.antennas[0])
     assert_array_almost_equal(self.dataset.ra[:, 0],
                               rad2deg(ra),
                               decimal=5)
     assert_array_almost_equal(self.dataset.dec[:, 0],
                               rad2deg(dec),
                               decimal=5)
     angle = self.target.parallactic_angle(self.timestamps,
                                           self.antennas[0])
     # TODO: Check why this is so poor... see SR-1882 for progress on this
     assert_array_almost_equal(self.dataset.parangle[:, 0],
                               rad2deg(angle),
                               decimal=0)
     x, y = self.target.sphere_to_plane(az, el, self.timestamps,
                                        self.antennas[1])
     assert_array_equal(self.dataset.target_x[:, 1], rad2deg(x))
     assert_array_equal(self.dataset.target_y[:, 1], rad2deg(y))
コード例 #18
0
                # track the Moon for a short time
                session.label('track')
                user_logger.info("Initiating %g-second track on target %s" % (opts.track_duration, target.name,))
                session.set_target(target) # Set the target
                session.track(target, duration=opts.track_duration, announce=False) # Set the target & mode = point

            ## 1) Track ephem target behind the moon
            user_logger.info("Sleeping for 2 minutes")
            time.sleep(120)
            user_logger.info("Setting to Ephem target")
            observer.date = ephem.now()
            moon = ephem.Moon(observer)
            moon.compute(observer)
            target = katpoint.construct_radec_target(moon.ra, moon.dec)
            session.label('track')
            user_logger.info("Initiating %g-second track on ephem target (%.2f, %.2f)" % (opts.track_duration, katpoint.rad2deg(float(moon.ra)), katpoint.rad2deg(float(moon.dec)),))
            session.set_target(target) # Set the target
            session.track(target, duration=opts.track_duration, announce=False) # Set the target & mode = point


            ## 2) Track moon again
            user_logger.info("Sleeping for 2 minutes")
            time.sleep(120)
            for target in observation_sources.iterfilter(el_limit_deg=opts.horizon):
                user_logger.info(target)
                # track the Moon for a short time
                session.label('track')
                user_logger.info("Repeating %g-second track on target %s" % (opts.track_duration, target.name,))
                session.set_target(target) # Set the target
                session.track(target, duration=opts.track_duration, announce=False) # Set the target & mode = point
コード例 #19
0
markers = []
colors = ['b','g','r','c','m','y','k']
pointtypes = ['o','*','x','^','s','p','h','+','D','d','v','H','d','v']
for point in  pointtypes:
    for color in colors:
        markers.append(str(color+point))

cat = katpoint.Catalogue(file(cat_filename),add_specials=False)
#cat.add('Sun, special') # except maybe the sun


cat.antenna = katpoint.Antenna('ant1, -30:43:17.3, 21:24:38.5, 1038.0, 12.0, 18.4 -8.7 0.0, -0:05:30.6 0 -0:00:03.3 0:02:14.2 0:00:01.6 -0:01:30.6 0:08:42.1, 1.22')
target = cat.targets[0]

t = katpoint.Timestamp().secs + np.arange(0, 24. * 60. * 60., 360.)
lst = katpoint.rad2deg(target.antenna.local_sidereal_time(t)) / 15

fig = plt.figure(1)
plt.clf()
fig.set_size_inches(12, 4)
plt.subplots_adjust(right=0.8)
lines = list()
labels = list()
count = 0
fontP = FontProperties()
fontP.set_size('small')


for target in cat.targets:
   count = count + 1
   elev = katpoint.rad2deg(target.azel(t)[1])
コード例 #20
0
def select_environment(data, antenna, condition="normal"):
    """ Flag data for environmental conditions. Options are:
    normal: Wind < 9.8m/s, -5C < Temperature < 40C, DeltaTemp < 3deg in 20 minutes
    optimal: Wind < 2.9m/s, -5C < Temperature < 35C, DeltaTemp < 2deg in 10 minutes
    ideal: Wind < 1m/s, 19C < Temp < 21C, DeltaTemp < 1deg in 30 minutes
    """
    # Convert timestamps to UTCseconds using katpoint
    timestamps = np.array(
        [katpoint.Timestamp(timestamp) for timestamp in data["timestamp_ut"]],
        dtype='float32')
    # Fit a smooth function (cubic spline) in time to the temperature and wind data
    raw_wind = data["wind_speed"]
    raw_temp = data["temperature"]

    fit_wind = interpolate.InterpolatedUnivariateSpline(timestamps,
                                                        raw_wind,
                                                        k=3)
    fit_temp = interpolate.InterpolatedUnivariateSpline(timestamps,
                                                        raw_temp,
                                                        k=3)
    #fit_temp_grad = fit_temp.derivative()

    # Day/Night
    # Night is defined as when the Sun is at -5deg.
    # Set up Sun target
    sun = katpoint.Target('Sun, special', antenna=antenna)
    sun_elevation = katpoint.rad2deg(sun.azel(timestamps)[1])

    # Apply limits on environmental conditions
    good = [True] * data.shape[0]

    # Set up limits on environmental conditions
    if condition == 'ideal':
        windlim = 1.
        temp_low = 19.
        temp_high = 21.
        deltatemp = 1. / (30. * 60.)
        sun_elev_lim = -5.
    elif condition == 'optimum':
        windlim = 2.9
        temp_low = -5.
        temp_high = 35.
        deltatemp = 2. / (10. * 60.)
        sun_elev_lim = -5.
    elif condition == 'normal':
        windlim = 9.8
        temp_low = -5.
        temp_high = 40.
        deltatemp = 3. / (20. * 60.)
        sun_elev_lim = 100.  #Daytime
    else:
        return good

    good = good & (fit_wind(timestamps) < windlim)
    good = good & ((fit_temp(timestamps) > temp_low) &
                   (fit_temp(timestamps) < temp_high))

    #Get the temperature gradient
    temp_grad = [
        fit_temp.derivatives(timestamp)[1] for timestamp in timestamps
    ]
    good = good & (np.abs(temp_grad) < deltatemp)

    #Day or night?
    good = good & (sun_elevation < sun_elev_lim)

    return good
コード例 #21
0
plt.subplot(121)
plot_times = np.arange(gain_times[0] - 1000, gain_times[-1] + 1000, 100.)
for n in range(4):
    plt.plot(plot_times - gain_times[0], amp_interps[n](plot_times), 'k')
    plt.plot(gain_times - gain_times[0],
             np.abs(ant_gains[n]),
             'o',
             label='ant%d' % (n + 1))
plt.xlabel('Time since start (seconds)')
plt.title('Gain amplitude')
plt.legend(loc='upper left')
plt.subplot(122)
for n in range(4):
    plt.plot(
        plot_times - gain_times[0],
        katpoint.rad2deg(scape.stats.angle_wrap(phase_interps[n](plot_times))),
        'k')
    plt.plot(gain_times - gain_times[0],
             katpoint.rad2deg(np.angle(ant_gains[n])),
             'o',
             label='ant%d' % (n + 1))
plt.xlabel('Time since start (seconds)')
plt.title('Gain phase (degrees)')
plt.legend(loc='lower left')

# Apply both bandpass and gain calibration to cal source visibilities
final_cal_vis_samples = [vis.copy() for vis in cal_vis_samples]
for vis, timestamps in zip(final_cal_vis_samples, cal_timestamps):
    # Interpolate antenna gains to timestamps of visibilities
    interp_ant_gains = np.zeros((4, len(timestamps)), dtype=np.complex64)
    for n in range(4):
コード例 #22
0
def calc_pointing_offsets(session, beams, target, middle_time, temperature,
                          pressure, humidity):
    """Calculate pointing offsets per receptor based on primary beam fits.

    Parameters
    ----------
    session : :class:`katcorelib.observe.CaptureSession` object
        The active capture session
    beams : dict mapping receptor name to list of :class:`BeamPatternFit`
        Fitted primary beams, per receptor and per frequency chunk
    target : :class:`katpoint.Target` object
        The target on which offset pointings were done
    middle_time : float
        Unix timestamp at the middle of sequence of offset pointings, used to
        find the mean location of a moving target (and reference for weather)
    temperature, pressure, humidity : float
        Atmospheric conditions at middle time, used for refraction correction

    Returns
    -------
    pointing_offsets : dict mapping receptor name to offset data (10 floats)
        Pointing offsets per receptor in degrees, stored as a sequence of
          - requested (az, el) after refraction (input to the pointing model),
          - full (az, el) offset, including contributions of existing pointing
            model, any existing adjustment and newly fitted adjustment
            (useful for fitting new pointing models as it is independent),
          - full (az, el) adjustment on top of existing pointing model,
            replacing any existing adjustment (useful for reference pointing),
          - relative (az, el) adjustment on top of existing pointing model and
            adjustment (useful for verifying reference pointing), and
          - rough uncertainty (standard deviation) of (az, el) adjustment.

    """
    pointing_offsets = {}
    # Iterate over receptors
    for ant in sorted(session.observers):
        beams_freq = beams.get(ant.name, [])
        beams_freq = [b for b in beams_freq if b is not None and b.is_valid]
        if not beams_freq:
            user_logger.debug("%s had no valid primary beam fitted", ant.name)
            continue
        offsets_freq = np.array([b.center for b in beams_freq])
        offsets_freq_std = np.array([b.std_center for b in beams_freq])
        weights_freq = 1. / offsets_freq_std**2
        # Do weighted average of offsets over frequency chunks
        results = np.average(offsets_freq,
                             axis=0,
                             weights=weights_freq,
                             returned=True)
        pointing_offset = results[0]
        pointing_offset_std = np.sqrt(1. / results[1])
        user_logger.debug("%s x=%+7.2f'+-%.2f\" y=%+7.2f'+-%.2f\"", ant.name,
                          pointing_offset[0] * 60,
                          pointing_offset_std[0] * 3600,
                          pointing_offset[1] * 60,
                          pointing_offset_std[1] * 3600)
        # Get existing pointing adjustment
        receptor = getattr(session.kat, ant.name)
        az_adjust = receptor.sensor.pos_adjust_pointm_azim.get_value()
        el_adjust = receptor.sensor.pos_adjust_pointm_elev.get_value()
        existing_adjustment = deg2rad(np.array((az_adjust, el_adjust)))
        # Start with requested (az, el) coordinates, as they apply
        # at the middle time for a moving target
        requested_azel = target.azel(timestamp=middle_time, antenna=ant)
        # Correct for refraction, which becomes the requested value
        # at input of pointing model
        rc = RefractionCorrection()

        def refract(az, el):  # noqa: E306, E301
            """Apply refraction correction as at the middle of scan."""
            return [az, rc.apply(el, temperature, pressure, humidity)]

        refracted_azel = np.array(refract(*requested_azel))
        # More stages that apply existing pointing model and/or adjustment
        pointed_azel = np.array(ant.pointing_model.apply(*refracted_azel))
        adjusted_azel = pointed_azel + existing_adjustment
        # Convert fitted offset back to spherical (az, el) coordinates
        pointing_offset = deg2rad(np.array(pointing_offset))
        beam_center_azel = target.plane_to_sphere(*pointing_offset,
                                                  timestamp=middle_time,
                                                  antenna=ant)
        # Now correct the measured (az, el) for refraction and then apply the
        # existing pointing model and adjustment to get a "raw" measured
        # (az, el) at the output of the pointing model stage
        beam_center_azel = refract(*beam_center_azel)
        beam_center_azel = ant.pointing_model.apply(*beam_center_azel)
        beam_center_azel = np.array(beam_center_azel) + existing_adjustment
        # Make sure the offset is a small angle around 0 degrees
        full_offset_azel = wrap_angle(beam_center_azel - refracted_azel)
        full_adjust_azel = wrap_angle(beam_center_azel - pointed_azel)
        relative_adjust_azel = wrap_angle(beam_center_azel - adjusted_azel)
        # Cheap 'n' cheerful way to convert cross-el uncertainty to azim form
        offset_azel_std = pointing_offset_std / \
            np.array([np.cos(refracted_azel[1]), 1.])
        # We store all variants of the pointing offset since we have it all
        # at our fingertips here
        point_data = np.r_[rad2deg(refracted_azel),
                           rad2deg(full_offset_azel),
                           rad2deg(full_adjust_azel),
                           rad2deg(relative_adjust_azel), offset_azel_std]
        pointing_offsets[ant.name] = point_data
    return pointing_offsets
コード例 #23
0
            sources = katpoint.Catalogue(add_specials=False)
            user_logger.info('Performing flux calibration')
            ra, dec = target.apparent_radec(timestamp=timenow)
            targetName = target.name.replace(" ", "")
            print targetName
            target.name = targetName + '_O'
            sources.add(target)

        if opts.cal == 'fluxN':
            timenow = katpoint.Timestamp()

            sources = katpoint.Catalogue(add_specials=False)
            user_logger.info('Performing flux calibration')
            ra, dec = target.apparent_radec(timestamp=timenow)
            print target
            print "ra %f ,dec %f" % (katpoint.rad2deg(ra),
                                     katpoint.rad2deg(dec))
            dec2 = dec + katpoint.deg2rad(1)
            print dec2, dec
            decS = dec - katpoint.deg2rad(1)
            targetName = target.name.replace(" ", "")
            print targetName
            print "newra %f newdec %f" % (katpoint.rad2deg(ra),
                                          katpoint.rad2deg(dec))
            Ntarget = katpoint.construct_radec_target(ra, dec2)
            Ntarget.antenna = bf_ants
            Ntarget.name = targetName + '_N'
            sources.add(Ntarget)

        if opts.cal == 'fluxS':
            timenow = katpoint.Timestamp()
コード例 #24
0
ファイル: fit_pointing_model.py プロジェクト: bongani-ska/RTS
                                         connectionstyle='arc3,rad=-0.2',
                                         fc='w',
                                         zorder=4))


# Set up figure with buttons
plt.ion()
fig = plt.figure(1, figsize=(15, 10))
fig.clear()
# Store highlighted target index on figure object
fig.highlighted_target = 0

# Axes to contain detail residual plots - initialise plots with old residuals
ax = fig.add_axes([0.27, 0.74, 0.2, 0.2])
ax.axhline(0, color='k', zorder=0)
plot_data_and_tooltip(ax, rad2deg(az), rad2deg(old.residual_xel) * 60.)
ax.axis([-180., 180., -resid_lim, resid_lim])
ax.set_xticks([])
ax.yaxis.set_ticks_position('right')
ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(arcmin_formatter))
ax.set_ylabel('Cross-EL offset')
ax.set_title('RESIDUALS')

ax = fig.add_axes([0.27, 0.54, 0.2, 0.2])
ax.axhline(0, color='k', zorder=0)
plot_data_and_tooltip(ax, rad2deg(az), rad2deg(old.residual_el) * 60.)
ax.axis([-180., 180., -resid_lim, resid_lim])
ax.set_xlabel('Azimuth (deg)')
ax.yaxis.set_ticks_position('right')
ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(arcmin_formatter))
ax.set_ylabel('EL offset')
コード例 #25
0
ra, dec = [], []
for scan in d.scans:
    if scan.baseline:
        ra_dec = np.array([
            katpoint.construct_azel_target(az, el).radec(t, d.antenna)
            for az, el, t in zip(scan.pointing['az'], scan.pointing['el'],
                                 scan.timestamps)
        ])
        x, y = target.sphere_to_plane(ra_dec[:, 0],
                                      ra_dec[:, 1],
                                      scan.timestamps,
                                      coord_system='radec')
        ra.append(x)
        dec.append(y)
# Remove pointing offset (order of a few arcminutes)
ra = katpoint.rad2deg(np.hstack(ra) - d.compscans[0].beam.center[0])
dec = katpoint.rad2deg(np.hstack(dec) - d.compscans[0].beam.center[1])
power = np.hstack([
    scan.pol('I').squeeze() - scan.baseline(scan.timestamps)
    for scan in d.scans if scan.baseline
])
power = np.abs(power)

# Grid the raster scan to projected plane
min_num_pixels = 201
interp = scape.fitting.Delaunay2DScatterFit(default_val=0.0, jitter=True)
interp.fit([ra, dec], power)
ra_range, dec_range = ra.max() - ra.min(), dec.max() - dec.min()
# Use a square pixel size in projected plane
pixel_size = min(ra_range, dec_range) / min_num_pixels
grid_ra = np.arange(ra.min(), ra.max(), pixel_size)
コード例 #26
0
ファイル: check_point_source.py プロジェクト: bongani-ska/RTS
            if compscan.beam is not None and d.data_unit == 'K':
                gain_hh = compscan.beam.height / average_flux
                baseline_hh = compscan.baseline_height()
        if (ant.name + 'V') in h5.inputs:
            d.fit_beams_and_baselines(pol='VV', circular_beam=False)
            if compscan.beam is not None and d.data_unit == 'K':
                gain_vv = compscan.beam.height / average_flux
                baseline_vv = compscan.baseline_height()
        d.fit_beams_and_baselines(pol='I', circular_beam=True)
        beam = compscan.beam
        # Obtain middle timestamp of compound scan, where all pointing calculations are done
        compscan_times = np.hstack([scan.timestamps for scan in compscan.scans])
        middle_time = np.median(compscan_times, axis=None)
        # Start with requested (az, el) coordinates, as they apply at the middle time for a moving target
        requested_azel = compscan.target.azel(middle_time)
        requested_azel = katpoint.rad2deg(np.array(requested_azel))
        # The offset is very simplistic and doesn't take into account refraction (see a_p_s_s for more correct way)
        offset_azel = katpoint.rad2deg(np.array(beam.center)) if beam else np.zeros(2)

        user_logger.info("Antenna %s" % (ant.name,))
        user_logger.info("------------")
        user_logger.info("Target = '%s', azel around (%.1f, %.1f) deg" %
                         (compscan.target.name, requested_azel[0], requested_azel[1]))
        if beam is None:
            user_logger.info("No total power beam found")
        else:
            user_logger.info("Beam height = %g %s" % (beam.height, d.data_unit))
            user_logger.info("Beamwidth = %.1f' (expected %.1f')" %
                             (60 * katpoint.rad2deg(beam.width), 60 * katpoint.rad2deg(beam.expected_width)))
            user_logger.info("Beam offset = (%.1f', %.1f') (expected (0', 0'))" %
                             (60 * offset_azel[0], 60 * offset_azel[1]))
コード例 #27
0
                              duration=opts.track_duration,
                              announce=False)  # Set the target & mode = point

            ## 1) Track ephem target behind the moon
            user_logger.info("Sleeping for 2 minutes")
            time.sleep(120)
            user_logger.info("Setting to Ephem target")
            observer.date = ephem.now()
            moon = ephem.Moon(observer)
            moon.compute(observer)
            target = katpoint.construct_radec_target(moon.ra, moon.dec)
            session.label('track')
            user_logger.info(
                "Initiating %g-second track on ephem target (%.2f, %.2f)" % (
                    opts.track_duration,
                    katpoint.rad2deg(float(moon.ra)),
                    katpoint.rad2deg(float(moon.dec)),
                ))
            session.set_target(target)  # Set the target
            session.track(target, duration=opts.track_duration,
                          announce=False)  # Set the target & mode = point

            ## 2) Track off target
            user_logger.info("Sleeping for 5 minutes")
            time.sleep(300)
            target = katpoint.construct_radec_target(moon.ra, moon.dec)
            session.label('track')
            user_logger.info(
                "Second set of %g-second track on ephem target (%.2f, %.2f)" %
                (
                    opts.track_duration,
コード例 #28
0
    ax.ann = ax.annotate('', xy=(0., 0.), xycoords='data', xytext=(32, 32), textcoords='offset points', size=14,
                         va='bottom', ha='center', bbox=dict(boxstyle='round4', fc='w'), visible=False, zorder=5,
                         arrowprops=dict(arrowstyle='-|>', shrinkB=10, connectionstyle='arc3,rad=-0.2',
                                         fc='w', zorder=4))

# Set up figure with buttons
plt.ion()
fig = plt.figure(1, figsize=(15, 10))
fig.clear()
# Store highlighted target index on figure object
fig.highlighted_target = 0

# Axes to contain detail residual plots - initialise plots with old residuals
ax = fig.add_axes([0.27, 0.74, 0.2, 0.2])
ax.axhline(0, color='k', zorder=0)
plot_data_and_tooltip(ax, rad2deg(az), rad2deg(old.residual_xel) * 60.)
ax.axis([-180., 180., -resid_lim, resid_lim])
ax.set_xticks([])
ax.yaxis.set_ticks_position('right')
ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(arcmin_formatter))
ax.set_ylabel('Cross-EL offset')
ax.set_title('RESIDUALS')

ax = fig.add_axes([0.27, 0.54, 0.2, 0.2])
ax.axhline(0, color='k', zorder=0)
plot_data_and_tooltip(ax, rad2deg(az), rad2deg(old.residual_el) * 60.)
ax.axis([-180., 180., -resid_lim, resid_lim])
ax.set_xlabel('Azimuth (deg)')
ax.yaxis.set_ticks_position('right')
ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(arcmin_formatter))
ax.set_ylabel('EL offset')
コード例 #29
0
def referencemetrics(ant, data, num_samples_limit=1, power_sample_limit=0):
    """Determine and sky RMS from the antenna pointing model."""
    """On the calculation of all-sky RMS
     Assume the el and cross-el errors have zero mean, are distributed normally, and are uncorrelated
     They are therefore described by a 2-dimensional circular Gaussian pdf with zero mean and *per-component*
     standard deviation of sigma
     The absolute sky error (== Euclidean length of 2-dim error vector) then has a Rayleigh distribution
     The RMS sky error has a mean value of sqrt(2) * sigma, since each squared error term is the sum of
     two squared Gaussian random values, each with an expected value of sigma^2.
      e.g. sky_rms = np.sqrt(np.mean((abs_sky_error-abs_sky_error.mean()) ** 2))

     A more robust estimate of the RMS sky error is obtained via the median of the Rayleigh distribution,
     which is sigma * sqrt(log(4)) -> convert this to the RMS sky error = sqrt(2) * sigma
      e.g. robust_sky_rms = np.median(np.sqrt((abs_sky_error-abs_sky_error.mean())**2)) * np.sqrt(2. / np.log(4.))
    """
    #print type(data.shape[0] ), type(num_samples_limit)
    beam = data['beam_height_I'].mean()
    good_beam = (data['beam_height_I'] > beam * .8) * (
        data['beam_height_I'] < beam * 1.2) * (data['beam_height_I'] >
                                               power_sample_limit)
    data = data[good_beam]

    if data.shape[0] > 0 and not np.all(good_beam):
        print("bad scan", data['target'][0])
    if data.shape[0] >= num_samples_limit and (
            data['timestamp'][-1] -
            data['timestamp'][0]) < 2000:  # check all fitted Ipks are valid
        condition_str = ['ideal', 'optimal', 'normal', 'other']
        condition = 3
        text = [
        ]  #azimuth, elevation, delta_azimuth, delta_azimuth_std, delta_elevation, delta_elevation_std,
        measured_delta_xel = data['delta_azimuth'] * np.cos(
            data['elevation'])  # scale due to sky shape
        abs_sky_error = measured_delta_xel
        model_delta_az, model_delta_el = ant.pointing_model.offset(
            data['azimuth'], data['elevation'])
        residual_az = data['delta_azimuth'] - model_delta_az
        residual_el = data['delta_elevation'] - model_delta_el
        residual_xel = residual_az * np.cos(data['elevation'])
        delta_xel_std = data['delta_azimuth_std'] * np.cos(data['elevation'])
        abs_sky_delta_std = rad2deg(
            np.sqrt(delta_xel_std**2 +
                    data['delta_azimuth_std']**2)) * 3600  # make arc seconds
        #for i,val in enumerate(data):
        #    print ("Test Target: '%s'   fit accuracy %.3f\"  "%(data['target'][i],abs_sky_delta_std[i]))
        abs_sky_error = rad2deg(np.sqrt((residual_xel)**2 +
                                        (residual_el)**2)) * 3600

        condition = get_condition(data)
        rms = np.std(abs_sky_error)
        robust = np.median(
            np.abs(abs_sky_error - abs_sky_error.mean())) * np.sqrt(
                2. / np.log(4.))
        text.append(
            "Dataset:%s  Test Target: '%s' Reference RMS = %.3f\" {fit-accuracy=%.3f\"} (robust %.3f\")  (N=%i Data Points) ['%s']"
            % (data['dataset'][0], data['target'][0], rms,
               np.mean(abs_sky_delta_std), robust, data.shape[0],
               condition_str[condition]))

        output_data = data[0].copy()  # make a copy of the rec array
        for i, x in enumerate(data[0]):  # make an average of data
            if x.dtype.kind == 'f':  # average floats
                output_data[i] = data.field(i).mean()
            else:
                output_data[i] = data.field(i)[0]
        sun = Target('Sun,special')
        source = Target(
            '%s,azel, %f,%f' %
            (output_data['target'], np.degrees(
                output_data['azimuth']), np.degrees(output_data['elevation'])))
        sun_sep = np.degrees(
            source.separation(sun,
                              timestamp=output_data['timestamp'],
                              antenna=ant))
        output_data = recfunctions.append_fields(output_data,
                                                 'sun_sep',
                                                 np.array([sun_sep]),
                                                 dtypes=np.float,
                                                 usemask=False,
                                                 asrecarray=True)
        output_data = recfunctions.append_fields(output_data,
                                                 'condition',
                                                 np.array([condition]),
                                                 dtypes=np.float,
                                                 usemask=False,
                                                 asrecarray=True)
        output_data = recfunctions.append_fields(output_data,
                                                 'rms',
                                                 np.array([rms]),
                                                 dtypes=np.float,
                                                 usemask=False,
                                                 asrecarray=True)
        output_data = recfunctions.append_fields(output_data,
                                                 'robust',
                                                 np.array([robust]),
                                                 dtypes=np.float,
                                                 usemask=False,
                                                 asrecarray=True)
        output_data = recfunctions.append_fields(output_data,
                                                 'N',
                                                 np.array([data.shape[0]]),
                                                 dtypes=np.float,
                                                 usemask=False,
                                                 asrecarray=True)

        #### Debugging
        #residual_az = data['delta_azimuth']   - model_delta_az
        #residual_el = data['delta_elevation'] - model_delta_el
        #residual_xel = residual_az * np.cos(data['elevation'])
        output_data = recfunctions.append_fields(
            output_data,
            'residual_az',
            np.array([rad2deg(residual_az.std()) * 3600]),
            dtypes=np.float,
            usemask=False,
            asrecarray=True)
        output_data = recfunctions.append_fields(
            output_data,
            'residual_el',
            np.array([rad2deg(residual_el.std()) * 3600]),
            dtypes=np.float,
            usemask=False,
            asrecarray=True)
        output_data = recfunctions.append_fields(
            output_data,
            'residual_xel',
            np.array([rad2deg(residual_xel.std()) * 3600]),
            dtypes=np.float,
            usemask=False,
            asrecarray=True)
        #print "%10s  %i  %3.1f, %s"%(data['target'][0],data['timestamp'][-1] - data['timestamp'][0], rms, str(np.degrees(data['delta_elevation']-data['delta_elevation'].mean())*3600) )
        output_data['wind_speed'] = data['wind_speed'].max()
        return text, output_data
    else:
        return None, None
コード例 #30
0
def reduce_compscan_inf(h5,
                        channel_mask=None,
                        chunks=16,
                        return_raw=False,
                        use_weights=False,
                        compscan_index=None,
                        debug=False):
    """Break the band up into chunks"""
    chunk_size = chunks
    rfi_static_flags = np.tile(False, h5.shape[0])
    if len(channel_mask) > 0:
        pickle_file = open(channel_mask, "rb")
        rfi_static_flags = pickle.load(pickle_file)
        pickle_file.close()
    gains_p = {}
    stdv = {}
    calibrated = False  # placeholder for calibration
    h5.select(compscans=compscan_index)
    a = []
    if len(h5.target_indices) > 1:
        print("Warning multiple targets in the compscan")
    for scan in h5.scans():
        a.append(h5.target_indices[0])
    target = h5.catalogue.targets[np.median(a).astype(
        np.int)]  # Majority Track
    compscan_index = h5.compscan_indices[0]
    #h5.select(targets=target,compscans=h5.compscan_indices[0]) # Majority Track in compscan
    if not return_raw:  # Calculate average target flux over entire band
        flux_spectrum = h5.catalogue.targets[
            h5.target_indices[0]].flux_density(h5.freqs)  # include flags
        average_flux = np.mean(
            [flux for flux in flux_spectrum if not np.isnan(flux)])
        temperature = np.mean(h5.temperature)
        pressure = np.mean(h5.pressure)
        humidity = np.mean(h5.humidity)
        wind_speed = np.mean(h5.wind_speed)
        wind_direction = np.degrees(
            np.angle(np.mean(np.exp(
                1j * np.radians(h5.wind_direction)))))  # Vector Mean
        sun = katpoint.Target('Sun, special')
        # Calculate pointing offset
        # Obtain middle timestamp of compound scan, where all pointing calculations are done
        middle_time = np.median(h5.timestamps[:], axis=None)
        # Start with requested (az, el) coordinates, as they apply at the middle time for a moving target
        requested_azel = target.azel(middle_time)
        # Correct for refraction, which becomes the requested value at input of pointing model
        rc = katpoint.RefractionCorrection()
        requested_azel = [
            requested_azel[0],
            rc.apply(requested_azel[1], temperature, pressure, humidity)
        ]
        requested_azel = katpoint.rad2deg(np.array(requested_azel))

    gaussian_centre = np.zeros((chunk_size * 2, 2, len(h5.ants)))
    gaussian_centre_std = np.zeros((chunk_size * 2, 2, len(h5.ants)))
    gaussian_width = np.zeros((chunk_size * 2, 2, len(h5.ants)))
    gaussian_width_std = np.zeros((chunk_size * 2, 2, len(h5.ants)))
    gaussian_height = np.zeros((chunk_size * 2, len(h5.ants)))
    gaussian_height_std = np.zeros((chunk_size * 2, len(h5.ants)))
    if debug:  #debug_text
        debug_text = []
        line = []
        line.append("#AntennaPol")
        line.append("Target")
        line.append("Freq(MHz)")  #MHz
        line.append("Centre Az")
        line.append("Centre El")
        line.append("Centre Az Std")
        line.append("Centre El Std")
        line.append("Centre Az Width")
        line.append("Centre El Width")
        line.append("Centre Az Width Std")
        line.append("Centre El Width Std")
        line.append("Height")
        line.append("Height Std")
        debug_text.append(','.join(line))
    pols = ["H", "V"]  # Put in logic for Intensity
    for i, pol in enumerate(pols):
        gains_p[pol] = []
        pos = []
        stdv[pol] = []
        h5.select(pol=pol,
                  corrprods='cross',
                  ants=h5.antlist,
                  targets=target,
                  compscans=compscan_index)
        h5.bls_lookup = calprocs.get_bls_lookup(h5.antlist, h5.corr_products)
        for scan in h5.scans():
            if scan[1] != 'track': continue
            valid_index = activity(h5, state='track')
            data = h5.vis[valid_index]
            if data.shape[0] > 0:  # need at least one data point
                #g0 = np.ones(len(h5.ants),np.complex)
                if use_weights:
                    weights = h5.weights[valid_index].mean(axis=0)
                else:
                    weights = np.ones(data.shape[1:]).astype(np.float)
                gains_p[pol].append(
                    calprocs.g_fit(data[:].mean(axis=0),
                                   weights,
                                   h5.bls_lookup,
                                   refant=0))
                stdv[pol].append(
                    np.ones(
                        (data.shape[0], data.shape[1],
                         len(h5.ants))).sum(axis=0))  #number of data points
                # Get coords in (x(time,ants),y(time,ants) coords)
                pos.append([
                    h5.target_x[valid_index, :].mean(axis=0),
                    h5.target_y[valid_index, :].mean(axis=0)
                ])
        for ant in range(len(h5.ants)):
            for chunk in range(chunks):
                if np.array(pos).shape[
                        0] > 4:  # Make sure there is enough data for a fit
                    freq = slice(chunk * (h5.shape[1] // chunks),
                                 (chunk + 1) * (h5.shape[1] // chunks))
                    rfi = ~rfi_static_flags[freq]
                    fitobj = fit.GaussianFit(
                        np.array(pos)[:, :, ant].mean(axis=0), [1., 1.], 1)
                    x = np.column_stack(
                        (np.array(pos)[:, 0, ant], np.array(pos)[:, 1, ant]))
                    y = np.abs(
                        np.array(gains_p[pol])[:, freq, :][:, rfi,
                                                           ant]).mean(axis=1)
                    y_err = 1. / np.sqrt(
                        np.array(stdv[pol])[:, freq, :][:, rfi,
                                                        ant].sum(axis=1))
                    gaussian = fitobj.fit(x.T, y, y_err)
                    #Fitted beam center is in (x, y) coordinates, in projection centred on target
                    snr = np.abs(np.r_[gaussian.std / gaussian.std_std])
                    valid_fit = np.all(
                        np.isfinite(np.r_[gaussian.mean, gaussian.std_mean,
                                          gaussian.std, gaussian.std_std,
                                          gaussian.height, gaussian.std_height,
                                          snr]))
                    theta = np.sqrt((gaussian.mean**2).sum(
                    ))  # this is to see if the co-ord is out of range
                    #The valid fit is needed because I have no way of working out if the gain solution was ok.
                    if not valid_fit or np.any(
                            theta > np.pi
                    ):  # the checks to see if the fit is ok
                        gaussian_centre[chunk + i * chunk_size, :,
                                        ant] = np.nan
                        gaussian_centre_std[chunk + i * chunk_size, :,
                                            ant] = np.nan
                        gaussian_width[chunk + i * chunk_size, :, ant] = np.nan
                        gaussian_width_std[chunk + i * chunk_size, :,
                                           ant] = np.nan
                        gaussian_height[chunk + i * chunk_size, ant] = np.nan
                        gaussian_height_std[chunk + i * chunk_size,
                                            ant] = np.nan
                    else:
                        # Convert this offset back to spherical (az, el) coordinates
                        beam_center_azel = target.plane_to_sphere(
                            np.radians(gaussian.mean[0]),
                            np.radians(gaussian.mean[1]), middle_time)
                        # Now correct the measured (az, el) for refraction and then apply the old pointing model
                        # to get a "raw" measured (az, el) at the output of the pointing model
                        beam_center_azel = [
                            beam_center_azel[0],
                            rc.apply(beam_center_azel[1], temperature,
                                     pressure, humidity)
                        ]
                        beam_center_azel = h5.ants[ant].pointing_model.apply(
                            *beam_center_azel)
                        beam_center_azel = np.degrees(
                            np.array(beam_center_azel))
                        gaussian_centre[chunk + i * chunk_size, :,
                                        ant] = beam_center_azel
                        gaussian_centre_std[chunk + i * chunk_size, :,
                                            ant] = gaussian.std_mean
                        gaussian_width[chunk + i * chunk_size, :,
                                       ant] = gaussian.std
                        gaussian_width_std[chunk + i * chunk_size, :,
                                           ant] = gaussian.std_std
                        gaussian_height[chunk + i * chunk_size,
                                        ant] = gaussian.height
                        gaussian_height_std[chunk + i * chunk_size,
                                            ant] = gaussian.std_height

    if return_raw:
        return np.r_[gaussian_centre, gaussian_centre_std, gaussian_width,
                     gaussian_width_std, gaussian_height, gaussian_height_std]
    else:
        ant_pointing = {}
        pols = ["HH", "VV", 'I']
        pol_ind = {}
        pol_ind['HH'] = np.arange(0.0 * chunk_size,
                                  1.0 * chunk_size,
                                  dtype=int)
        pol_ind['VV'] = np.arange(1.0 * chunk_size,
                                  2.0 * chunk_size,
                                  dtype=int)
        pol_ind['I'] = np.arange(0.0 * chunk_size, 2.0 * chunk_size, dtype=int)
        for ant in range(len(h5.ants)):
            h_pol = ~np.isnan(
                gaussian_centre[pol_ind['HH'], :, ant]) & ~np.isnan(
                    1. / gaussian_centre_std[pol_ind['HH'], :, ant])
            v_pol = ~np.isnan(
                gaussian_centre[pol_ind['VV'], :, ant]) & ~np.isnan(
                    1. / gaussian_centre_std[pol_ind['VV'], :, ant])
            valid_solutions = np.count_nonzero(
                h_pol & v_pol
            )  # Note this is twice the number of solutions because of the Az & El parts
            print("%i valid solutions out of %s for %s on %s at %s " %
                  (valid_solutions // 2, chunks, h5.ants[ant].name,
                   target.name, str(katpoint.Timestamp(middle_time))))
            if debug:  #debug_text
                for pol_i, pol in enumerate(["H", "V"]):
                    for chunk in range(chunks * pol_i, chunks * (pol_i + 1)):
                        line = []
                        freq = h5.channel_freqs[slice(
                            chunk * (h5.shape[1] // chunks),
                            (chunk + 1) * (h5.shape[1] // chunks))].mean()
                        line.append(h5.ants[ant].name + pol)
                        line.append(target.name)
                        line.append(str(freq / 1e6))  #MHz
                        line.append(str(gaussian_centre[chunk, 0, ant]))
                        line.append(str(gaussian_centre[chunk, 1, ant]))
                        line.append(str(gaussian_centre_std[chunk, 0, ant]))
                        line.append(str(gaussian_centre_std[chunk, 1, ant]))
                        line.append(str(gaussian_width[chunk, 0, ant]))
                        line.append(str(gaussian_width[chunk, 1, ant]))
                        line.append(str(gaussian_width_std[chunk, 0, ant]))
                        line.append(str(gaussian_width_std[chunk, 1, ant]))
                        line.append(str(gaussian_height[chunk, ant]))
                        line.append(str(gaussian_height_std[chunk, ant]))
                        debug_text.append(','.join(line))
            if valid_solutions // 2 > 0:  # a bit overboard
                name = h5.ants[ant].name
                ant_pointing[name] = {}
                ant_pointing[name]["antenna"] = h5.ants[ant].name
                ant_pointing[name]["valid_solutions"] = valid_solutions
                ant_pointing[name]["dataset"] = h5.name.split('/')[-1].split(
                    '.')[0]
                ant_pointing[name]["target"] = target.name
                ant_pointing[name]["timestamp_ut"] = str(
                    katpoint.Timestamp(middle_time))
                ant_pointing[name][
                    "data_unit"] = 'Jy' if calibrated else 'counts'
                ant_pointing[name]["frequency"] = h5.freqs.mean()
                ant_pointing[name]["flux"] = average_flux
                ant_pointing[name]["temperature"] = temperature
                ant_pointing[name]["pressure"] = pressure
                ant_pointing[name]["humidity"] = humidity
                ant_pointing[name]["wind_speed"] = wind_speed
                ant_pointing[name]["wind_direction"] = wind_direction
                # work out the sun's angle
                sun_azel = katpoint.rad2deg(
                    np.array(sun.azel(middle_time, antenna=h5.ants[ant])))
                ant_pointing[name]["sun_az"] = sun_azel.tolist()[0]
                ant_pointing[name]["sun_el"] = sun_azel.tolist()[1]
                ant_pointing[name]["timestamp"] = middle_time.astype(int)
                #Work out the Target position and the requested position
                # Start with requested (az, el) coordinates, as they apply at the middle time for a moving target
                requested_azel = target.azel(middle_time, antenna=h5.ants[ant])
                # Correct for refraction, which becomes the requested value at input of pointing model
                rc = katpoint.RefractionCorrection()
                requested_azel = [
                    requested_azel[0],
                    rc.apply(requested_azel[1], temperature, pressure,
                             humidity)
                ]
                requested_azel = katpoint.rad2deg(np.array(requested_azel))
                target_azel = katpoint.rad2deg(
                    np.array(target.azel(middle_time, antenna=h5.ants[ant])))
                ant_pointing[name]["azimuth"] = target_azel.tolist()[0]
                ant_pointing[name]["elevation"] = target_azel.tolist()[1]
                azel_beam = w_average(
                    gaussian_centre[pol_ind["I"], :, ant],
                    axis=0,
                    weights=1. / gaussian_centre_std[pol_ind["I"], :, ant]**2)
                # Make sure the offset is a small angle around 0 degrees
                offset_azel = katpoint.wrap_angle(azel_beam - requested_azel,
                                                  360.)
                ant_pointing[name]["delta_azimuth"] = offset_azel.tolist()[0]
                ant_pointing[name]["delta_elevation"] = offset_azel.tolist()[1]
                ant_pointing[name]["delta_elevation_std"] = 0.0  #calc
                ant_pointing[name]["delta_azimuth_std"] = 0.0  #calc
                for pol in pol_ind:
                    ant_pointing[name]["beam_height_%s" % (pol)] = w_average(
                        gaussian_height[pol_ind[pol], ant],
                        axis=0,
                        weights=1. / gaussian_height_std[pol_ind[pol], ant]**2)
                    ant_pointing[name]["beam_height_%s_std" % (pol)] = np.sqrt(
                        np.nansum(1. /
                                  gaussian_height_std[pol_ind[pol], ant]**2))
                    ant_pointing[name]["beam_width_%s" % (pol)] = w_average(
                        gaussian_width[pol_ind[pol], :, ant],
                        axis=0,
                        weights=1. /
                        gaussian_width_std[pol_ind[pol], :, ant]**2).mean()
                    ant_pointing[name]["beam_width_%s_std" % (pol)] = np.sqrt(
                        np.nansum(1. /
                                  gaussian_width_std[pol_ind[pol], :, ant]**2))
                    ant_pointing[name]["baseline_height_%s" % (pol)] = 0.0
                    ant_pointing[name]["baseline_height_%s_std" % (pol)] = 0.0
                    ant_pointing[name][
                        "refined_%s" %
                        (pol)] = 5.0  # I don't know what this means
                    ant_pointing[name]["azimuth_%s" % (pol)] = w_average(
                        gaussian_centre[pol_ind[pol], 0, ant],
                        axis=0,
                        weights=1. /
                        gaussian_centre_std[pol_ind[pol], 0, ant]**2)
                    ant_pointing[name]["elevation_%s" % (pol)] = w_average(
                        gaussian_centre[pol_ind[pol], 1, ant],
                        axis=0,
                        weights=1. /
                        gaussian_centre_std[pol_ind[pol], 1, ant]**2)
                    ant_pointing[name]["azimuth_%s_std" % (pol)] = np.sqrt(
                        np.nansum(
                            1. / gaussian_centre_std[pol_ind[pol], 0, ant]**2))
                    ant_pointing[name]["elevation_%s_std" % (pol)] = np.sqrt(
                        np.nansum(
                            1. / gaussian_centre_std[pol_ind[pol], 1, ant]**2))
            else:
                print("No (%i) solutions for %s on %s at %s " %
                      (valid_solutions, h5.ants[ant].name, target.name,
                       str(katpoint.Timestamp(middle_time))))
        if debug:  #debug_text
            debug_text.append('')
            base = "%s_%s" % (h5.name.split('/')[-1].split('.')[0],
                              "interferometric_pointing_DEBUG")
            g = file('%s:Scan%i:%s' % (base, compscan_index, target.name), 'w')
            g.write("\n".join(debug_text))
            g.close()
        return ant_pointing
コード例 #31
0
ファイル: fit_pointing_model.py プロジェクト: bongani-ska/RTS
def update(fig):
    """Fit new pointing model and update plots."""
    # Perform early redraw to improve interactivity of clicks (which typically change state of target dots)
    # Target state: 0 = flagged, 1 = unflagged, 2 = highlighted
    target_state = keep * ((target_index == fig.highlighted_target) + 1)
    # Specify colours of flagged, unflagged and highlighted dots, respectively, as RGBA tuples
    dot_colors = np.choose(
        target_state,
        np.atleast_3d(np.vstack([(1, 1, 1, 1), (0, 0, 1, 1), (1, 0, 0, 1)]))).T
    for ax in fig.axes[:7]:
        ax.dots.set_facecolors(dot_colors)
    fig.canvas.draw()

    # Fit new pointing model and update results
    params, sigma_params = new_model.fit(az[keep], el[keep],
                                         measured_delta_az[keep],
                                         measured_delta_el[keep],
                                         std_delta_az[keep],
                                         std_delta_el[keep], enabled_params)
    new.update(new_model)

    # Update rest of figure
    fig.texts[3].set_text("$\chi^2$ = %.1f" % new.chi2)
    fig.texts[4].set_text("all sky rms = %.3f' (robust %.3f')" %
                          (new.sky_rms, new.robust_sky_rms))
    new.metrics(target_index == fig.highlighted_target)
    fig.texts[5].set_text("target sky rms = %.3f' (robust %.3f')" %
                          (new.sky_rms, new.robust_sky_rms))
    new.metrics(keep)
    fig.texts[-1].set_text(unique_targets[fig.highlighted_target])
    # Update model parameter strings
    for p, param in enumerate(display_params):
        fig.texts[2 * p + 6].set_text(
            new_model.param_str(param +
                                1, '%.3e') if enabled_params[param] else '')
        # HACK to convert sigmas to arcminutes, but not for P9 and P12 (which are scale factors)
        # This functionality should really reside inside the PointingModel class
        std_param = rad2deg(sigma_params[param]) * 60. if param not in [
            8, 11
        ] else sigma_params[param]
        std_param_str = ("%.2f'" %
                         std_param) if param not in [8, 11] else ("%.0e" %
                                                                  std_param)
        fig.texts[2 * p + 7].set_text(
            std_param_str if enabled_params[param] and opts.use_stats else '')
        # Turn parameter string bold if it changed significantly from old value
        if np.abs(params[param] -
                  old_model.params[param]) > 3.0 * sigma_params[param]:
            fig.texts[2 * p + 6].set_weight('bold')
            fig.texts[2 * p + 7].set_weight('bold')
        else:
            fig.texts[2 * p + 6].set_weight('normal')
            fig.texts[2 * p + 7].set_weight('normal')
    daz_az, del_az, daz_el, del_el, quiver, before, after = fig.axes[:7]
    # Update quiver plot
    quiver_scale = 0.1 * fig.quiver_scale_slider.val * np.pi / 6 / deg2rad(
        old.robust_sky_rms / 60.)
    quiver.quiv.set_segments(
        quiver_segments(new.residual_az, new.residual_el, quiver_scale))
    quiver.quiv.set_color(
        np.choose(
            keep,
            np.atleast_3d(np.vstack([(0.3, 0.3, 0.3, 0.2),
                                     (0.3, 0.3, 0.3, 1)]))).T)
    # Update residual plots
    daz_az.dots.set_offsets(np.c_[rad2deg(az),
                                  rad2deg(new.residual_xel) * 60.])
    del_az.dots.set_offsets(np.c_[rad2deg(az), rad2deg(new.residual_el) * 60.])
    daz_el.dots.set_offsets(np.c_[rad2deg(el),
                                  rad2deg(new.residual_xel) * 60.])
    del_el.dots.set_offsets(np.c_[rad2deg(el), rad2deg(new.residual_el) * 60.])
    after.dots.set_offsets(np.c_[np.arctan2(new.residual_el, new.residual_xel),
                                 new.abs_sky_error])
    resid_lim = 1.2 * max(new.abs_sky_error.max(), old.abs_sky_error.max())
    daz_az.set_ylim(-resid_lim, resid_lim)
    del_az.set_ylim(-resid_lim, resid_lim)
    daz_el.set_ylim(-resid_lim, resid_lim)
    del_el.set_ylim(-resid_lim, resid_lim)
    before.set_ylim(0, resid_lim)
    after.set_ylim(0, resid_lim)
    # Redraw the figure
    fig.canvas.draw()
コード例 #32
0
ファイル: peak_up.py プロジェクト: bongani-ska/RTS
    err_power = np.dot(resid, resid)
    print "Iteration %d: residual = %.2f, beam height = %.3f, width = %s, inner region = %d/%d" % \
          (n, (prev_err_power - err_power) / err_power, beam.height, scape.beam_baseline.width_string(beam.width), \
           np.sum(~outer), len(outer))
    if (err_power == 0.0) or (prev_err_power - err_power) / err_power < 1e-5:
        break
    prev_err_power = err_power + 0.0

##### PLOT RESULTS #####

start_time = timestamps.min()
t = timestamps - start_time
plt.plot(t, power, 'b')
plt.plot(t, baseline(target_coords), 'g')
plt.plot(t, beam(target_coords) + baseline(target_coords), 'g')
plt.xlabel('Time in seconds since %s' % katpoint.Timestamp(start_time).local())
plt.ylabel('Power')
plt.title('Quick beam and baseline fit')

print "Beam offset is (%f, %f) deg" % (katpoint.rad2deg(
    beam.center[0]), katpoint.rad2deg(beam.center[1]))


def set_delay(time_after_now, delay=None):
    t = katpoint.Timestamp() + time_after_now
    if delay is None:
        delay = cable2 - cable1 + tgt.geometric_delay(ant2, t, ant1)[0]
    print delay
    roach.req.poco_delay('0x', int(t.secs) * 1000, '%.9f' % (delay * 1000))
    roach.req.poco_delay('0y', int(t.secs) * 1000, '%.9f' % (delay * 1000))
コード例 #33
0
    def next(self, event):
        azimuth, elevation = [], []
        # Opening the out put file to write the RFI contaminated channels information
        if self.ind >= len(datasets):
            print "No more data to be reduced, hold on a second while we writting the extracted info in the file."
            fout = file(opts.outfilebase + '.csv', 'w')
            fout.write("FILENAME, FREQUCENCY[MHz], TIMESTAMPS, ABS_TIME, AZIMUTH, ELEVATION, PEAK POWER [dB]\n")
            fout.writelines([('%s, %0.4f, %0.4f, %s, %0.2f, %0.2f,%0.2f \n') % tuple(p) for p in output_data if p])
            fout.close()

            # Opening the out put file to write only RFI conteminated channels
            fout2 = file(opts.outfilebase2 + '.txt', 'w')
            fout2.write("CONTAMINATED FREQUCENCY CHANNELS [MHz]\n")
            fout2.write("======================================\n")
            fout2.writelines([('%0.4f\n') % p for p in set(output_chan) if p])
            fout2.close()

            # Time vs Frequency for selected channels figure
            fig_new = plt.figure()
            new_ax1 = fig_new.add_subplot(311,axisbg='#FFFFCC' )
            new_ax1.plot(output_ts, output_chan,'k+',lw=3)
            new_ax1.set_xlabel("Time [s]")
            new_ax1.set_ylabel("Frequency [MHz]")
            new_ax2 = fig_new.add_subplot(312, axisbg="#FFFFCC")
            new_ax2.plot(output_az,output_chan,'g+', lw=3)
            new_ax2.set_xlabel("Azimuth [Deg]")
            new_ax2.set_ylabel("Frequency [MHz]")
            new_ax3 = fig_new.add_subplot(313, axisbg='#FFFFCC')
            new_ax3.plot(output_az, output_el, 'r+', lw=3)
            new_ax3.set_xlabel("Azimuth [Deg]")
            new_ax3.set_ylabel("Elevation [Deg]")
            print "We done writting in to a file,look at the frequency vs time plot to see the RFI mapping as a function of time"
            print "The RFI contaminated channels are:", set(output_chan)
            plt.show()
            sys.exit()

        self.filename = datasets[self.ind]
        try:
            #logger.info("Loading dataset %s , File size is %fMB, This is File number %s" % (os.path.basename(self.filename),os.path.getsize(self.filename)/1e6,self.ind))
            logger.info("Loading dataset %s , File size is %fMB, This is File number %s" % (os.path.basename(self.filename),os.path.getsize(self.filename),self.ind))
            current_dataset = DataSet(self.filename, baseline=opts.baseline)
            out_filename =os.path.basename(self.filename)
            start_freq_channel = int(opts.freq_keep.split(',')[0])
            end_freq_channel = int(opts.freq_keep.split(',')[1])
            current_dataset = current_dataset.select(freqkeep=range(start_freq_channel, end_freq_channel+1))
            current_dataset = current_dataset.select(labelkeep='scan', copy=False)
            if len(current_dataset.compscans) == 0 or len(current_dataset.scans) == 0:
                logger.warning('No scans found in file, skipping data set')
         
            # try to extract antenna target points per each timestamps
            for cscan in current_dataset.compscans:
                target = cscan.target.name
                az = np.hstack([scan.pointing['az'] for scan in cscan.scans])
                el = np.hstack([scan.pointing['el'] for scan in cscan.scans])
                ts = np.hstack([scan.timestamps for scan in cscan.scans])
                azimuth.extend(katpoint.rad2deg(az)),elevation.extend(katpoint.rad2deg(el))

            azimuth, elevation = np.array(azimuth), np.array(elevation)
            ts,f,amp = extract_xyz_data(current_dataset,'abs_time','freq','amp')
            power,freq = amp.data,f.data
            t = np.hstack(ts.data)
            base_freq = freq[0]
            p = np.hstack(power)
            T,F = np.meshgrid(t,base_freq)
            A,F = np.meshgrid(azimuth,base_freq)
            E,F = np.meshgrid(elevation,base_freq)
            AA = A.ravel()
            EE = E.ravel()
            TT = T.ravel()
            FF = F.ravel()
            PP = p.ravel()
            
            def onselect_next(eclick,erelease):
                global output_data, output_chan, output_ts
                xmin = min(eclick.xdata, erelease.xdata)
                xmax = max(eclick.xdata, erelease.xdata)
                ymin = min(eclick.ydata, erelease.ydata)
                ymax = max(eclick.ydata, erelease.ydata)

                ind = (FF >= xmin) & (FF <= xmax)  & (PP >= ymin) & (PP <= ymax)
                selected_freq = FF[ind]
                selected_amp = 10.0*np.log10(PP[ind])
                selected_ts = TT[ind]
                selected_az = AA[ind]
                selected_el = EE[ind]
                print "SUCCESSFUL, CLICK AND DRAG TO SELECT THE NEXT RFI CHANNELS OR NEXT TO LOAD NEW DATASET"

                #sorting with increasng X_new
                indices = np.lexsort(keys = (selected_ts, selected_freq))

                for index in indices:
                    output_data.append([out_filename, selected_freq[index],selected_ts[index], katpoint.Timestamp(selected_ts[index]).local(), selected_az[index], selected_el[index], selected_amp[index]])
                for point in output_data:
                    output_chan.append(point[1])
                    output_ts.append(point[2])
                    output_az.append(point[4])
                    output_el.append(point[5])
                    
            def toggle_selector_next(event):
                print ' Key pressed.'
                if event.key in ['Q', 'q'] and toggle_selector.RS.active:
                    print ' RectangleSelector deactivated.'
                    toggle_selector_next.RS.set_active(False)
                if event.key in ['A', 'a'] and not toggle_selector_next.RS.active:
                    print ' RectangleSelector activated.'
                    toggle_selector_next.RS.set_active(True)

            # New Figure for the current data set
            current_ax.clear()
            plt.subplots_adjust(bottom=0.2)
            current_ax.plot(FF,PP, '+')
            current_ax.set_title("CLICK AND DRAG TO SELECT RFI CHAN")
            current_ax.set_xlabel('Frequency Channels [MHz]', bbox=dict(facecolor='red'))
            current_ax.set_ylabel('Power [Count]', bbox=dict(facecolor='red'))
            plt.draw()

            print "NEW DATA SET SUCCESSFLY LOADED, CLICK AND DRAG TO SELECT THE RFI CONTAMINATED CHANNELS OR NEXT TO CONTINUE"

            toggle_selector_next.RS = RectangleSelector(current_ax, onselect_next, drawtype='box')
            plt.connect('key_press_event', toggle_selector_next)
        except ValueError:
            print os.path.basename(self.filename), "DATA CORUPTED, PLEASE CLICK NEXT TO LOAD ANOTHER DATASET"
        self.ind +=1
コード例 #34
0
#
""")
f.writelines(np.sort(outlines))
f.close()

# Test the catalogue
ant = katpoint.Antenna('KAT7, -30:43:16.71, 21:24:35.86, 1055, 12.0')
cat = katpoint.Catalogue(open('bae_optical_pointing_sources.csv'),
                         add_specials=False,
                         antenna=ant)
timestamp = katpoint.Timestamp()
ra, dec = np.array([t.radec(timestamp) for t in cat]).transpose()
constellation = [
    t.aliases[0].partition(' ')[2][:3] if t.aliases else 'SOL' for t in cat
]
ra, dec = katpoint.rad2deg(ra), katpoint.rad2deg(dec)
az, el = np.hstack([
    targ.azel([
        katpoint.Timestamp(timestamp + t)
        for t in range(0, 24 * 3600, 30 * 60)
    ]) for targ in cat
])
az, el = katpoint.rad2deg(az), katpoint.rad2deg(el)

plt.figure(1)
plt.clf()
for n, c in enumerate(constellation):
    plt.text(ra[n], dec[n], c, ha='left', va='center', size='xx-small')
plt.axis([0, 360, -90, 90])
plt.xlabel('Right Ascension (degrees)')
plt.ylabel('Declination (degrees)')
コード例 #35
0
def main():
    # Parse command-line options and arguments
    parser = optparse.OptionParser(
        usage='%prog [options] <data file> [<data file> ...]',
        description='Display a horizon mask from a set of data files.')
    parser.add_option(
        '-a',
        '--baseline',
        dest='baseline',
        type="string",
        metavar='BASELINE',
        default='A1A1',
        help=
        "Baseline to load (e.g. 'A1A1' for antenna 1), default is first single-dish baseline in file"
    )
    parser.add_option('-o',
                      '--output',
                      dest='output',
                      type="string",
                      metavar='OUTPUTFILE',
                      default=None,
                      help="Write out intermediate h5 file")
    parser.add_option('-s',
                      '--split',
                      dest='split',
                      action="store_true",
                      metavar='SPLIT',
                      default=False,
                      help="Whether to split each horizon plot in half")
    parser.add_option('-z',
                      '--azshift',
                      dest='azshift',
                      type='float',
                      metavar='AZIMUTH_SHIFT',
                      default=45.0,
                      help="Degrees to rotate azimuth window by.")
    parser.add_option(
        '--temp-limit',
        dest='temp_limit',
        type='float',
        default=40.0,
        help=
        "The Tempreture Limit to make the cut-off for the mask. This is calculated "
        "as the T_sys at zenith plus the atmospheric noise contrabution at 10 degrees"
        "elevation as per R.T. 199  .")
    parser.add_option(
        "-n",
        "--nd-models",
        help="Name of optional directory containing noise diode model files")

    (opts, args) = parser.parse_args()

    # Check arguments
    if len(args) < 1:
        raise RuntimeError('Please specify the data file to reduce')

    # Load data set
    gridtemp = []
    for filename in args:
        print 'Loading baseline', opts.baseline, 'from data file', filename
        d = scape.DataSet(filename,
                          baseline=opts.baseline,
                          nd_models=opts.nd_models)
        if len(d.freqs) > 1:
            # Only keep main scans (discard slew and cal scans) a
            d = d.select(freqkeep=range(200, 800))
            d = remove_rfi(d, width=7, sigma=5)
            d = d.convert_power_to_temperature(min_duration=3,
                                               jump_significance=4.0)
            d = d.select(flagkeep='~nd_on')
            d = d.select(labelkeep='scan', copy=False)
            # Average all frequency channels into one band
            d.average()

        # Extract azimuth and elevation angle from (azel) target associated with scan, in degrees
        azimuth, elevation, temp = [], [], []
        for s in d.scans:
            azimuth.extend(rad2deg(s.pointing['az']))
            elevation.extend(rad2deg(s.pointing['el']))
            temp.extend(tuple(np.sqrt(s.pol('HH')[:, 0] * s.pol('VV')[:, 0])))
        assert len(azimuth) == len(elevation) == len(temp), "sizes don't match"

        data = (azimuth, elevation, temp)
        np.array(azimuth) < -89
        print "Gridding the data"
        print "data shape = ", np.shape(data[0] + (
            np.array(azimuth)[np.array(azimuth) < -89] + 360.0).tolist())
        print np.shape(data[1] +
                       np.array(elevation)[np.array(azimuth) < -89].tolist())
        print np.shape(data[2] +
                       np.array(temp)[np.array(azimuth) < -89].tolist())
        gridtemp.append(
            mlab.griddata(
                data[0] +
                (np.array(azimuth)[np.array(azimuth) < -89] + 360.0).tolist(),
                data[1] +
                np.array(elevation)[np.array(azimuth) < -89].tolist(),
                data[2] + np.array(temp)[np.array(azimuth) < -89].tolist(),
                np.arange(-90, 271, 1), np.arange(4, 16, 0.1)))
        # The +361 is to ensure that the point are well spaced,
        #this offset is not a problem as it is just for sorting out a boundery condition
        print "Completed Gridding the data"

    print "Making the mask"
    mask = gridtemp[0] >= opts.temp_limit
    for grid in gridtemp:
        mask = mask * (grid >= opts.temp_limit)
    maskr = np.zeros((len(np.arange(-90, 271, 1)), 2))
    for i, az in enumerate(np.arange(-90, 271, 1)):
        print 'at az %f' % (az, )
        maskr[i] = az, np.max(elevation)
        for j, el in enumerate(np.arange(4, 16, 0.1)):
            if ~mask.data[j, i] and ~mask.mask[j, i]:
                maskr[i] = az, el
                break
    np.savetxt('horizon_mask_%s.dat' % (opts.baseline), maskr[1:, :])
コード例 #36
0
    if len(observation_sources.filter(el_limit_deg=opts.horizon)) == 0:
        user_logger.warning(
            "No targets are currently visible - please re-run the script later"
        )
    else:
        # Start capture session, which creates HDF5 file
        with start_session(kat, **vars(opts)) as session:
            session.standard_setup(**vars(opts))
            session.capture_start()

            # Iterate through source list, picking the next one that is up
            for target in observation_sources.iterfilter(
                    el_limit_deg=opts.horizon):
                user_logger.info(target)
                [ra, dec] = target.radec()
                (tra, tdec) = (katpoint.rad2deg(float(ra)),
                               katpoint.rad2deg(float(dec)))
                session.label('track')
                user_logger.info(
                    "Initiating %g-second track on target (%.2f, %.2f)" % (
                        opts.track_duration,
                        tra,
                        tdec,
                    ))
                session.set_target(target)  # Set the target
                session.track(target,
                              duration=opts.track_duration,
                              announce=False)  # Set the target & mode = point
                for dra in [-1, 0, 1]:
                    for ddec in [-1, 0, 1]:
                        [ra, dec] = target.radec()