コード例 #1
0
 def out_step(shuff_inpt_tm1, vinp_t, pred_fm1, v_h1_tm1):
     j_t = concatenate((shuff_inpt_tm1, vinp_t, pred_fm1.dimshuffle(0, 'x')),
                        axis=-1)
     theano.printing.Print("j_t.shape")(j_t.shape)
     vinp_h1_t, vgate_h1_t = outs_to_v_h1.proj(j_t)
     v_h1_t = v_cell1.step(vinp_h1_t, vgate_h1_t, v_h1_tm1)
     theano.printing.Print("v_h1_t.shape")(v_h1_t.shape)
     pred_f = v_h1_t.dot(pred_proj) + pred_b
     theano.printing.Print("pred_f.shape")(pred_f.shape)
     return pred_f[:, 0], v_h1_t
コード例 #2
0
 def out_step(shuff_inpt_tm1, vinp_t, pred_fm1, v_h1_tm1):
     j_t = concatenate(
         (shuff_inpt_tm1, vinp_t, pred_fm1.dimshuffle(0, 'x')), axis=-1)
     theano.printing.Print("j_t.shape")(j_t.shape)
     vinp_h1_t, vgate_h1_t = outs_to_v_h1.proj(j_t)
     v_h1_t = v_cell1.step(vinp_h1_t, vgate_h1_t, v_h1_tm1)
     theano.printing.Print("v_h1_t.shape")(v_h1_t.shape)
     pred_f = v_h1_t.dot(pred_proj) + pred_b
     theano.printing.Print("pred_f.shape")(pred_f.shape)
     return pred_f[:, 0], v_h1_t
コード例 #3
0
 def sample_out_step(x_tm1_shuf, vinp_t, pred_fm1, v_h1_tm1):
     j_t = concatenate(
         (x_tm1_shuf, vinp_t, pred_fm1.dimshuffle(0, 'x')), axis=-1)
     theano.printing.Print("j_t.shape")(j_t.shape)
     vinp_h1_t, vgate_h1_t = outs_to_v_h1.proj(j_t)
     v_h1_t = v_cell1.step(vinp_h1_t, vgate_h1_t, v_h1_tm1)
     theano.printing.Print("v_h1_t.shape")(v_h1_t.shape)
     pred_f = v_h1_t.dot(pred_proj) + pred_b
     # clip MSE estimate... not perfect
     #pred_f = tensor.clip(pred_f, 0 + 0.01, n_bins - 0.01)
     #pred_f = tensor.floor(pred_f)
     return pred_f[:, 0], v_h1_t
コード例 #4
0
 def sample_out_step(x_tm1_shuf, vinp_t, pred_fm1, v_h1_tm1):
     j_t = concatenate((x_tm1_shuf, vinp_t,
                        pred_fm1.dimshuffle(0, 'x')),
                        axis=-1)
     theano.printing.Print("j_t.shape")(j_t.shape)
     vinp_h1_t, vgate_h1_t = outs_to_v_h1.proj(j_t)
     v_h1_t = v_cell1.step(vinp_h1_t, vgate_h1_t, v_h1_tm1)
     theano.printing.Print("v_h1_t.shape")(v_h1_t.shape)
     pred_f = sigmoid(v_h1_t.dot(pred_proj) + pred_b)
     pred_f = sample_binomial(pred_f, n_bins, srng)
     theano.printing.Print("pred_f.shape")(pred_f.shape)
     return pred_f[:, 0], v_h1_t
コード例 #5
0
 def sample_out_step(x_tm1_shuf, vinp_f, pred_fm1, v_h1_fm1):
     theano.printing.Print("pred_fm1.shape")(pred_fm1.shape)
     samp_fm1 = sample_softmax(pred_fm1, srng).dimshuffle(0, 'x')
     theano.printing.Print("samp_fm1.shape")(samp_fm1.shape)
     j_f = concatenate((x_tm1_shuf, vinp_f, samp_fm1), axis=-1)
     theano.printing.Print("j_f.shape")(j_f.shape)
     vinp_h1_f, vgate_h1_f = outs_to_v_h1.proj(j_f)
     v_h1_f = v_cell1.step(vinp_h1_f, vgate_h1_f, v_h1_fm1)
     theano.printing.Print("v_h1_f.shape")(v_h1_f.shape)
     pred_f = v_h1_f.dot(pred_proj) + pred_b
     theano.printing.Print("pred_f.shape")(pred_f.shape)
     return pred_f, v_h1_f, samp_fm1
コード例 #6
0
 def sample_out_step(x_tm1_shuf, vinp_t, pred_fm1, v_h1_tm1):
     j_t = concatenate((x_tm1_shuf, vinp_t,
                        pred_fm1.dimshuffle(0, 'x')),
                        axis=-1)
     theano.printing.Print("j_t.shape")(j_t.shape)
     vinp_h1_t, vgate_h1_t = outs_to_v_h1.proj(j_t)
     v_h1_t = v_cell1.step(vinp_h1_t, vgate_h1_t, v_h1_tm1)
     theano.printing.Print("v_h1_t.shape")(v_h1_t.shape)
     pred_f = v_h1_t.dot(pred_proj) + pred_b
     # clip MSE estimate... not perfect
     #pred_f = tensor.clip(pred_f, 0 + 0.01, n_bins - 0.01)
     #pred_f = tensor.floor(pred_f)
     return pred_f[:, 0], v_h1_t
コード例 #7
0
 def sample_out_step(x_tm1_shuf, vinp_f, pred_fm1, v_h1_fm1):
     theano.printing.Print("pred_fm1.shape")(pred_fm1.shape)
     samp_fm1 = sample_softmax(pred_fm1, srng).dimshuffle(0, 'x')
     theano.printing.Print("samp_fm1.shape")(samp_fm1.shape)
     j_f = concatenate((x_tm1_shuf, vinp_f,
                        samp_fm1),
                        axis=-1)
     theano.printing.Print("j_f.shape")(j_f.shape)
     vinp_h1_f, vgate_h1_f = outs_to_v_h1.proj(j_f)
     v_h1_f = v_cell1.step(vinp_h1_f, vgate_h1_f, v_h1_fm1)
     theano.printing.Print("v_h1_f.shape")(v_h1_f.shape)
     pred_f = v_h1_f.dot(pred_proj) + pred_b
     theano.printing.Print("pred_f.shape")(pred_f.shape)
     return pred_f, v_h1_f, samp_fm1
コード例 #8
0
        (shuff_inpt_shapes[2], shuff_inpt_shapes[1] * shuff_inpt_shapes[0], 1))

    theano.printing.Print("shuff_inpt.shape")(shuff_inpt.shape)
    theano.printing.Print("vinp.shape")(vinp.shape)
    # input from previous time, pred from previous feature
    true_f = tensor.zeros_like(target)
    # Target *just* offset in frequency so we can use it
    true_f = tensor.set_subtensor(true_f[:, :, 1:], target[:, :, :-1])
    true_f = true_f.dimshuffle(2, 0, 1)
    true_f_shapes = true_f.shape
    true_f = true_f.reshape(
        (true_f_shapes[0], true_f_shapes[1] * true_f_shapes[2], 1))
    theano.printing.Print("shuff_inpt.shape")(shuff_inpt.shape)
    theano.printing.Print("vinp.shape")(shuff_inpt.shape)
    theano.printing.Print("true_f.shape")(true_f.shape)
    j = concatenate((shuff_inpt, vinp, true_f), axis=-1)
    vinp_h1, vgate_h1 = outs_to_v_h1.proj(j)

    def out_step(vinp_h1_t, vinpgate_h1_t, v_h1_tm1):
        v_h1_t = v_cell1.step(vinp_h1_t, vinpgate_h1_t, v_h1_tm1)
        return v_h1_t

    init_hidden = tensor.zeros((shuff_inpt.shape[1], n_v_proj),
                               dtype=theano.config.floatX)
    theano.printing.Print("init_hidden.shape")(init_hidden.shape)
    v_h1, updates = theano.scan(fn=out_step,
                                sequences=[vinp_h1, vgate_h1],
                                outputs_info=[init_hidden])
    pre_pred = v_h1.dot(pred_proj) + pred_b
    pre_pred = pre_pred.dimshuffle(1, 0, 2)
    shp = pre_pred.shape
コード例 #9
0
                                     1))

    theano.printing.Print("shuff_inpt.shape")(shuff_inpt.shape)
    theano.printing.Print("vinp.shape")(vinp.shape)
    # input from previous time, pred from previous feature
    true_f = tensor.zeros_like(target)
    # Target *just* offset in frequency so we can use it
    true_f = tensor.set_subtensor(true_f[:, :, 1:], target[:, :, :-1])
    true_f = true_f.dimshuffle(2, 0, 1)
    true_f_shapes = true_f.shape
    true_f = true_f.reshape((true_f_shapes[0],
                             true_f_shapes[1] * true_f_shapes[2], 1))
    theano.printing.Print("shuff_inpt.shape")(shuff_inpt.shape)
    theano.printing.Print("vinp.shape")(shuff_inpt.shape)
    theano.printing.Print("true_f.shape")(true_f.shape)
    j = concatenate((shuff_inpt, vinp, true_f), axis=-1)
    vinp_h1, vgate_h1 = outs_to_v_h1.proj(j)
    def out_step(vinp_h1_t, vinpgate_h1_t, v_h1_tm1):
        v_h1_t = v_cell1.step(vinp_h1_t, vinpgate_h1_t, v_h1_tm1)
        return v_h1_t

    init_hidden = tensor.zeros((shuff_inpt.shape[1], n_v_proj),
                                dtype=theano.config.floatX)
    theano.printing.Print("init_hidden.shape")(init_hidden.shape)
    v_h1, updates = theano.scan(
        fn=out_step,
        sequences=[vinp_h1, vgate_h1],
        outputs_info=[init_hidden])
    pre_pred = v_h1.dot(pred_proj) + pred_b
    pre_pred = pre_pred.dimshuffle(1, 0, 2)
    shp = pre_pred.shape
コード例 #10
0
    def sample_step(x_tm1, h1_tm1, h2_tm1, h3_tm1, k_tm1, w_tm1, ctx):
        xinp_h1_t, xgate_h1_t = inp_to_h1.proj(x_tm1)
        xinp_h2_t, xgate_h2_t = inp_to_h2.proj(x_tm1)
        xinp_h3_t, xgate_h3_t = inp_to_h3.proj(x_tm1)

        attinp_h1, attgate_h1 = att_to_h1.proj(w_tm1)

        h1_t = cell1.step(xinp_h1_t + attinp_h1, xgate_h1_t + attgate_h1,
                          h1_tm1)
        h1inp_h2, h1gate_h2 = h1_to_h2.proj(h1_t)
        h1inp_h3, h1gate_h3 = h1_to_h3.proj(h1_t)

        a_t = h1_t.dot(h1_to_att_a)
        b_t = h1_t.dot(h1_to_att_b)
        k_t = h1_t.dot(h1_to_att_k)

        a_t = tensor.exp(a_t)
        b_t = tensor.exp(b_t)
        k_t = k_tm1 + tensor.exp(k_t)

        ss_t = calc_phi(k_t, a_t, b_t, u)
        # calculate and return stopping criteria
        sh_t = calc_phi(k_t, a_t, b_t, u_max)
        ss5 = ss_t.dimshuffle(0, 1, 'x')
        ss6 = ss5 * ctx.dimshuffle(1, 0, 2)
        w_t = ss6.sum(axis=1)

        attinp_h2, attgate_h2 = att_to_h2.proj(w_t)
        attinp_h3, attgate_h3 = att_to_h3.proj(w_t)

        h2_t = cell2.step(xinp_h2_t + h1inp_h2 + attinp_h2,
                          xgate_h2_t + h1gate_h2 + attgate_h2, h2_tm1)

        h2inp_h3, h2gate_h3 = h2_to_h3.proj(h2_t)

        h3_t = cell3.step(xinp_h3_t + h1inp_h3 + h2inp_h3 + attinp_h3,
                          xgate_h3_t + h1gate_h3 + h2gate_h3 + attgate_h3,
                          h3_tm1)
        out_t = h1_t.dot(h1_to_outs) + h2_t.dot(h2_to_outs) + h3_t.dot(
            h3_to_outs)
        theano.printing.Print("out_t.shape")(out_t.shape)
        out_t_shape = out_t.shape
        x_tm1_shuf = x_tm1.dimshuffle(1, 0, 'x')
        vinp_t = out_t.dimshuffle(1, 0, 'x')
        theano.printing.Print("x_tm1_shuf.shape")(x_tm1_shuf.shape)
        theano.printing.Print("vinp_t.shape")(vinp_t.shape)
        init_hidden = tensor.zeros((x_tm1_shuf.shape[1], n_v_proj),
                                   dtype=theano.config.floatX)
        j_t = concatenate((x_tm1_shuf, vinp_t), axis=-1)
        vinp_h1_t, vinpgate_h1_t = outs_to_v_h1.proj(j_t)

        def sample_out_step(vinp_h1_f, vinpgate_h1_f, v_h1_tm1):
            v_h1_f = v_cell1.step(vinp_h1_f, vinpgate_h1_f, v_h1_tm1)
            return v_h1_f

        pre_pred_t, isupdates = theano.scan(
            fn=sample_out_step,
            sequences=[vinp_h1_t, vinpgate_h1_t],
            outputs_info=[init_hidden])
        #pred_t = sigmoid(pre_pred_t)
        #x_t = sample_binomial(pred_t, n_bins, srng)
        # MSE
        pred_t = pre_pred_t.dot(pred_proj) + pred_b
        x_t = pred_t
        return x_t, h1_t, h2_t, h3_t, k_t, w_t, ss_t, sh_t, isupdates
コード例 #11
0
    shp = vinp.shape

    shuff_inpt_shapes = inpt.shape
    theano.printing.Print("inpt.shape")(inpt.shape)
    shuff_inpt = inpt.dimshuffle(2, 1, 0)
    theano.printing.Print("shuff_inpt.shape")(shuff_inpt.shape)
    shuff_inpt = shuff_inpt.reshape(
        (shuff_inpt_shapes[2], shuff_inpt_shapes[1] * shuff_inpt_shapes[0], 1))

    theano.printing.Print("shuff_inpt.shape")(shuff_inpt.shape)
    theano.printing.Print("vinp.shape")(vinp.shape)
    # input from previous time, pred from previous feature
    true_f = tensor.zeros_like(target)
    theano.printing.Print("shuff_inpt.shape")(shuff_inpt.shape)
    theano.printing.Print("vinp.shape")(shuff_inpt.shape)
    j = concatenate((shuff_inpt, vinp), axis=-1)
    vinp_h1, vgate_h1 = outs_to_v_h1.proj(j)

    def out_step(vinp_h1_t, vinpgate_h1_t, v_h1_tm1):
        v_h1_t = v_cell1.step(vinp_h1_t, vinpgate_h1_t, v_h1_tm1)
        return v_h1_t

    init_hidden = tensor.zeros((shuff_inpt.shape[1], n_v_proj),
                               dtype=theano.config.floatX)
    theano.printing.Print("init_hidden.shape")(init_hidden.shape)
    v_h1, updates = theano.scan(fn=out_step,
                                sequences=[vinp_h1, vgate_h1],
                                outputs_info=[init_hidden])
    pre_pred = v_h1.dot(pred_proj) + pred_b
    theano.printing.Print("pre_pred.shape")(pre_pred.shape)
    pre_pred = pre_pred.dimshuffle(1, 0, 2)
コード例 #12
0
    def sample_step(x_tm1, h1_tm1, h2_tm1, h3_tm1, k_tm1, w_tm1, ctx):
        xinp_h1_t, xgate_h1_t = inp_to_h1.proj(x_tm1)
        xinp_h2_t, xgate_h2_t = inp_to_h2.proj(x_tm1)
        xinp_h3_t, xgate_h3_t = inp_to_h3.proj(x_tm1)

        attinp_h1, attgate_h1 = att_to_h1.proj(w_tm1)

        h1_t = cell1.step(xinp_h1_t + attinp_h1, xgate_h1_t + attgate_h1,
                          h1_tm1)
        h1inp_h2, h1gate_h2 = h1_to_h2.proj(h1_t)
        h1inp_h3, h1gate_h3 = h1_to_h3.proj(h1_t)

        a_t = h1_t.dot(h1_to_att_a)
        b_t = h1_t.dot(h1_to_att_b)
        k_t = h1_t.dot(h1_to_att_k)

        a_t = tensor.exp(a_t)
        b_t = tensor.exp(b_t)
        k_t = k_tm1 + tensor.exp(k_t)

        ss_t = calc_phi(k_t, a_t, b_t, u)
        # calculate and return stopping criteria
        sh_t = calc_phi(k_t, a_t, b_t, u_max)
        ss5 = ss_t.dimshuffle(0, 1, 'x')
        ss6 = ss5 * ctx.dimshuffle(1, 0, 2)
        w_t = ss6.sum(axis=1)

        attinp_h2, attgate_h2 = att_to_h2.proj(w_t)
        attinp_h3, attgate_h3 = att_to_h3.proj(w_t)

        h2_t = cell2.step(xinp_h2_t + h1inp_h2 + attinp_h2,
                          xgate_h2_t + h1gate_h2 + attgate_h2, h2_tm1)

        h2inp_h3, h2gate_h3 = h2_to_h3.proj(h2_t)

        h3_t = cell3.step(xinp_h3_t + h1inp_h3 + h2inp_h3 + attinp_h3,
                          xgate_h3_t + h1gate_h3 + h2gate_h3 + attgate_h3,
                          h3_tm1)
        out_t = h1_t.dot(h1_to_outs) + h2_t.dot(h2_to_outs) + h3_t.dot(
            h3_to_outs)
        theano.printing.Print("out_t.shape")(out_t.shape)
        out_t_shape = out_t.shape
        vinp_t = out_t.dimshuffle(1, 0, 'x')
        theano.printing.Print("vinp_t.shape")(vinp_t.shape)
        theano.printing.Print("x_tm1.shape")(x_tm1.shape)
        shuff_inpt_t = x_tm1.dimshuffle(1, 0, 'x')
        theano.printing.Print("shuff_inpt_t.shape")(shuff_inpt_t.shape)
        j_t = concatenate((shuff_inpt_t, vinp_t), axis=-1)

        def sample_out_step(j_t, v_h1_tm1):
            vinp_h1_t, vgate_h1_t = outs_to_v_h1.proj(j_t)
            v_h1_t = v_cell1.step(vinp_h1_t, vgate_h1_t, v_h1_tm1)
            return v_h1_t

        init_corr_out_t = tensor.zeros((vinp_t.shape[1], n_v_proj))
        theano.printing.Print("init_corr_out_t.shape")(init_corr_out_t.shape)
        corr_out_t, isupdates = theano.scan(fn=sample_out_step,
                                            sequences=[j_t],
                                            outputs_info=[init_corr_out_t])
        theano.printing.Print("corr_out_t.shape")(corr_out_t.shape)
        corr_out_t = corr_out_t.dimshuffle(1, 0, 2)
        theano.printing.Print("corr_out_t.shape")(corr_out_t.shape)
        shp = corr_out_t.shape
        corr_out_t = corr_out_t.reshape((shp[0], -1))
        theano.printing.Print("corr_out_t.shape")(corr_out_t.shape)
        pre_pred_t = corr_out_t.dot(pred_proj) + pred_b
        theano.printing.Print("pre_pred_t.shape")(pre_pred_t.shape)
        #pred_t = sigmoid(pre_pred_t)
        #x_t = sample_binomial(pred_t, n_bins, srng)
        # MSE
        pred_t = pre_pred_t
        x_t = pred_t
        theano.printing.Print("pred_t.shape")(pred_t.shape)
        return x_t, h1_t, h2_t, h3_t, k_t, w_t, ss_t, sh_t, isupdates