コード例 #1
0
                zeros = zeros.astype(X_mb.dtype)
                mask_zeros = np.zeros((new_len, X_mb_mask.shape[1]))
                mask_zeros = mask_zeros.astype(X_mb_mask.dtype)
                X_mb = np.concatenate((X_mb, zeros), axis=0)
                X_mb_mask = np.concatenate((X_mb_mask, mask_zeros), axis=0)
                assert len(X_mb[start:stop]) == cut_len
                assert len(X_mb_mask[start:stop]) == cut_len
            rval = function(X_mb[start:stop], X_mb_mask[start:stop], c_mb,
                            c_mb_mask, prev_h1, prev_h2, prev_h3, prev_kappa,
                            prev_w)
            current_cost = rval[0]
            prev_h1, prev_h2, prev_h3 = rval[1:4]
            prev_h1 = prev_h1[-1]
            prev_h2 = prev_h2[-1]
            prev_h3 = prev_h3[-1]
            prev_kappa = rval[4][-1]
            prev_w = rval[5][-1]
        partial_costs.append(current_cost)
        return partial_costs


run_loop(_loop,
         train_function,
         train_itr,
         cost_function,
         valid_itr,
         n_epochs=n_epochs,
         checkpoint_dict=checkpoint_dict,
         checkpoint_every_n=checkpoint_every_n,
         skip_minimums=True)
コード例 #2
0
        partial_costs = []
        for n in range(n_cuts):
            start = n * cut_len
            stop = (n + 1) * cut_len
            if len(X_mb[start:stop]) < cut_len:
                new_len = cut_len - len(X_mb) % cut_len
                zeros = np.zeros((new_len, X_mb.shape[1],
                                  X_mb.shape[2]))
                zeros = zeros.astype(X_mb.dtype)
                mask_zeros = np.zeros((new_len, X_mb_mask.shape[1]))
                mask_zeros = mask_zeros.astype(X_mb_mask.dtype)
                X_mb = np.concatenate((X_mb, zeros), axis=0)
                X_mb_mask = np.concatenate((X_mb_mask, mask_zeros), axis=0)
                assert len(X_mb[start:stop]) == cut_len
                assert len(X_mb_mask[start:stop]) == cut_len
            rval = function(X_mb[start:stop],
                            X_mb_mask[start:stop],
                            c_mb, c_mb_mask,
                            prev_h1, prev_h2, prev_kappa, prev_w)
            current_cost = rval[0]
            prev_h1, prev_h2 = rval[1:3]
            prev_h1 = prev_h1[-1]
            prev_h2 = prev_h2[-1]
            prev_kappa = rval[3][-1]
            prev_w = rval[4][-1]
        partial_costs.append(current_cost)
        return partial_costs

run_loop(_loop, train_function, train_itr, cost_function, valid_itr,
         n_epochs=n_epochs, checkpoint_dict=checkpoint_dict)
コード例 #3
0
            start = n * cut_len
            stop = (n + 1) * cut_len
            if len(X_mb[start:stop]) < cut_len:
                new_len = cut_len - len(X_mb) % cut_len
                zeros = np.zeros((new_len, X_mb.shape[1],
                                  X_mb.shape[2]))
                zeros = zeros.astype(X_mb.dtype)
                mask_zeros = np.zeros((new_len, X_mb_mask.shape[1]))
                mask_zeros = mask_zeros.astype(X_mb_mask.dtype)
                X_mb = np.concatenate((X_mb, zeros), axis=0)
                X_mb_mask = np.concatenate((X_mb_mask, mask_zeros), axis=0)
                assert len(X_mb[start:stop]) == cut_len
                assert len(X_mb_mask[start:stop]) == cut_len
            rval = function(X_mb[start:stop],
                            X_mb_mask[start:stop],
                            c_mb, c_mb_mask,
                            prev_h1, prev_h2, prev_h3, prev_kappa, prev_w)
            current_cost = rval[0]
            prev_h1, prev_h2, prev_h3 = rval[1:4]
            prev_h1 = prev_h1[-1]
            prev_h2 = prev_h2[-1]
            prev_h3 = prev_h3[-1]
            prev_kappa = rval[4][-1]
            prev_w = rval[5][-1]
        partial_costs.append(current_cost)
        return partial_costs

run_loop(_loop, train_function, train_itr, cost_function, valid_itr,
         n_epochs=n_epochs, checkpoint_dict=checkpoint_dict,
         checkpoint_every_n=checkpoint_every_n, skip_minimums=True)
コード例 #4
0
            stop = (n + 1) * cut_len
            if len(X_mb[start:stop]) < cut_len:
                new_len = cut_len - len(X_mb) % cut_len
                zeros = np.zeros((new_len, X_mb.shape[1], X_mb.shape[2]))
                zeros = zeros.astype(X_mb.dtype)
                mask_zeros = np.zeros((new_len, X_mb_mask.shape[1]))
                mask_zeros = mask_zeros.astype(X_mb_mask.dtype)
                X_mb = np.concatenate((X_mb, zeros), axis=0)
                X_mb_mask = np.concatenate((X_mb_mask, mask_zeros), axis=0)
                assert len(X_mb[start:stop]) == cut_len
                assert len(X_mb_mask[start:stop]) == cut_len
            rval = function(X_mb[start:stop], X_mb_mask[start:stop], c_mb,
                            c_mb_mask, prev_h1, prev_h2, prev_kappa, prev_w)
            current_cost = rval[0]
            prev_h1, prev_h2 = rval[1:3]
            prev_h1 = prev_h1[-1]
            prev_h2 = prev_h2[-1]
            prev_kappa = rval[3][-1]
            prev_w = rval[4][-1]
        partial_costs.append(current_cost)
        return partial_costs


run_loop(_loop,
         train_function,
         train_itr,
         cost_function,
         valid_itr,
         n_epochs=n_epochs,
         checkpoint_dict=checkpoint_dict)
コード例 #5
0
train_loss = train_loss.mean()

valid_prediction = get_output(l_out, deterministic=True)[:, :, :width, :height]
valid_loss = squared_error(valid_prediction, target_var)
valid_loss = valid_loss.mean()

params = get_all_params(l_out, trainable=True)
# adam is the optimizer that is updating everything
updates = adam(train_loss, params, learning_rate=1E-4)

train_function = theano.function([input_var, target_var], train_loss,
                                 updates=updates)
valid_function = theano.function([input_var, target_var], valid_loss)
predict_function = theano.function([input_var], prediction)

checkpoint_dict = {}
checkpoint_dict["train_function"] = train_function
checkpoint_dict["valid_function"] = valid_function
checkpoint_dict["predict_function"] = predict_function


def _loop(function, itr):
    X_train, y_train = itr.next()
    ret = function(X_train, y_train)
    return [ret]


run_loop(_loop, train_function, train_itr, valid_function, valid_itr,
         n_epochs=n_epochs, checkpoint_dict=checkpoint_dict,
         checkpoint_every_n=100)
コード例 #6
0
ファイル: music_synthesis.py プロジェクト: szcom/crikey
params = get_all_params(l_out, trainable=True)
# adam is the optimizer that is updating everything
updates = adam(train_loss, params, learning_rate=1E-4)

train_function = theano.function([input_var, target_var],
                                 train_loss,
                                 updates=updates)
valid_function = theano.function([input_var, target_var], valid_loss)
predict_function = theano.function([input_var], prediction)

checkpoint_dict = {}
checkpoint_dict["train_function"] = train_function
checkpoint_dict["valid_function"] = valid_function
checkpoint_dict["predict_function"] = predict_function


def _loop(function, itr):
    X_train, y_train = itr.next()
    ret = function(X_train, y_train)
    return [ret]


run_loop(_loop,
         train_function,
         train_itr,
         valid_function,
         valid_itr,
         n_epochs=n_epochs,
         checkpoint_dict=checkpoint_dict,
         checkpoint_every_n=100)