コード例 #1
0
    border_mode = (conv_size1 - 1, 0)
    conv1 = conv2d(inpt, w_conv1, subsample=(2, 1), border_mode=border_mode)
    conv1 = conv1 + b_conv1.dimshuffle('x', 0, 'x', 'x')
    theano.printing.Print("conv1.shape")(conv1.shape)

    border_mode = (conv_size2 - 1, 0)
    conv2 = conv2d(conv1, w_conv2, subsample=(2, 1), border_mode=border_mode)
    conv2 = relu(conv2 + b_conv2.dimshuffle('x', 0, 'x', 'x'))
    theano.printing.Print("conv2.shape")(conv2.shape)

    # Last axis is 1
    conv_out = conv2[:, :, :, 0].dimshuffle(2, 0, 1)
    theano.printing.Print("conv_out.shape")(conv_out.shape)

    conv_h1, convgate_h1 = conv_to_h1.proj(conv_out)
    conv_h2, convgate_h2 = conv_to_h2.proj(conv_out)

    u = tensor.arange(c_sym.shape[0]).dimshuffle('x', 'x', 0)
    u = tensor.cast(u, theano.config.floatX)

    def calc_phi(k_t, a_t, b_t, u_c):
        a_t = a_t.dimshuffle(0, 1, 'x')
        b_t = b_t.dimshuffle(0, 1, 'x')
        ss1 = (k_t.dimshuffle(0, 1, 'x') - u_c) ** 2
        ss2 = -b_t * ss1
        ss3 = a_t * tensor.exp(ss2)
        ss4 = ss3.sum(axis=1)
        return ss4

    def step(xinp_h1_t, xgate_h1_t,
コード例 #2
0
    params += [h1_to_att_a, h1_to_att_b, h1_to_att_k]
    params += [h1_to_outs, h2_to_outs, h3_to_outs]

    pred_proj, = make_weights(n_v_proj, [n_pred_proj], random_state)
    pred_b, = make_biases([n_pred_proj])

    params += [pred_proj, pred_b]
    biases += [pred_b]

    inpt = X_sym[:-1]
    target = X_sym[1:]
    mask = X_mask_sym[1:]
    context = c_sym * c_mask_sym.dimshuffle(0, 1, 'x')

    inp_h1, inpgate_h1 = inp_to_h1.proj(inpt)
    inp_h2, inpgate_h2 = inp_to_h2.proj(inpt)
    inp_h3, inpgate_h3 = inp_to_h3.proj(inpt)

    u = tensor.arange(c_sym.shape[0]).dimshuffle('x', 'x', 0)
    u = tensor.cast(u, theano.config.floatX)

    def calc_phi(k_t, a_t, b_t, u_c):
        a_t = a_t.dimshuffle(0, 1, 'x')
        b_t = b_t.dimshuffle(0, 1, 'x')
        ss1 = (k_t.dimshuffle(0, 1, 'x') - u_c)**2
        ss2 = -b_t * ss1
        ss3 = a_t * tensor.exp(ss2)
        ss4 = ss3.sum(axis=1)
        return ss4
コード例 #3
0
    params += [h1_to_att_a, h1_to_att_b, h1_to_att_k]
    params += [h1_to_outs, h2_to_outs, h3_to_outs]

    pred_proj, = make_weights(n_v_proj, [n_pred_proj], random_state)
    pred_b, = make_biases([n_pred_proj])

    params += [pred_proj, pred_b]
    biases += [pred_b]

    inpt = X_sym[:-1]
    target = X_sym[1:]
    mask = X_mask_sym[1:]
    context = c_sym * c_mask_sym.dimshuffle(0, 1, 'x')

    inp_h1, inpgate_h1 = inp_to_h1.proj(inpt)
    inp_h2, inpgate_h2 = inp_to_h2.proj(inpt)
    inp_h3, inpgate_h3 = inp_to_h3.proj(inpt)

    u = tensor.arange(c_sym.shape[0]).dimshuffle('x', 'x', 0)
    u = tensor.cast(u, theano.config.floatX)

    def calc_phi(k_t, a_t, b_t, u_c):
        a_t = a_t.dimshuffle(0, 1, 'x')
        b_t = b_t.dimshuffle(0, 1, 'x')
        ss1 = (k_t.dimshuffle(0, 1, 'x') - u_c) ** 2
        ss2 = -b_t * ss1
        ss3 = a_t * tensor.exp(ss2)
        ss4 = ss3.sum(axis=1)
        return ss4
コード例 #4
0
    params += [h1_to_att_a, h1_to_att_b, h1_to_att_k]
    params += [h1_to_outs, h2_to_outs, h3_to_outs]

    pred_proj, = make_weights(n_v_proj, [n_pred_proj], random_state)
    pred_b, = make_biases([n_pred_proj])

    params += [pred_proj, pred_b]
    biases += [pred_b]

    inpt = X_sym[:-1]
    target = X_sym[1:]
    mask = X_mask_sym[1:]
    context = c_sym * c_mask_sym.dimshuffle(0, 1, 'x')

    inp_h1, inpgate_h1 = inp_to_h1.proj(inpt)
    inp_h2, inpgate_h2 = inp_to_h2.proj(inpt)
    inp_h3, inpgate_h3 = inp_to_h3.proj(inpt)

    u = tensor.arange(c_sym.shape[0]).dimshuffle('x', 'x', 0)
    u = tensor.cast(u, theano.config.floatX)

    def calc_phi(k_t, a_t, b_t, u_c):
        a_t = a_t.dimshuffle(0, 1, 'x')
        b_t = b_t.dimshuffle(0, 1, 'x')
        ss1 = (k_t.dimshuffle(0, 1, 'x') - u_c) ** 2
        ss2 = -b_t * ss1
        ss3 = a_t * tensor.exp(ss2)
        ss4 = ss3.sum(axis=1)
        return ss4
コード例 #5
0
    h2_to_outs, = make_weights(n_hid, [n_hid], random_state)
    h3_to_outs, = make_weights(n_hid, [n_hid], random_state)
    params += [h1_to_outs, h2_to_outs, h3_to_outs]

    # 2 * for mag and phase
    v_outs_to_corr_outs, = make_weights(n_v_hid, [1], random_state)
    corr_outs_to_final_outs, = make_weights(n_hid, [2 * n_density],
                                            random_state)
    params += [v_outs_to_corr_outs, corr_outs_to_final_outs]

    inpt = X_sym[:-1]
    target = X_sym[1:]
    mask = X_mask_sym[1:]
    context = c_sym * c_mask_sym.dimshuffle(0, 1, 'x')

    inp_h1, inpgate_h1 = inp_to_h1.proj(inpt)
    inp_h2, inpgate_h2 = inp_to_h2.proj(inpt)
    inp_h3, inpgate_h3 = inp_to_h3.proj(inpt)

    u = tensor.arange(c_sym.shape[0]).dimshuffle('x', 'x', 0)
    u = tensor.cast(u, theano.config.floatX)

    def calc_phi(k_t, a_t, b_t, u_c):
        a_t = a_t.dimshuffle(0, 1, 'x')
        b_t = b_t.dimshuffle(0, 1, 'x')
        ss1 = (k_t.dimshuffle(0, 1, 'x') - u_c)**2
        ss2 = -b_t * ss1
        ss3 = a_t * tensor.exp(ss2)
        ss4 = ss3.sum(axis=1)
        return ss4
コード例 #6
0
    border_mode = (conv_size1 - 1, 0)
    conv1 = conv2d(inpt, w_conv1, subsample=(2, 1), border_mode=border_mode)
    conv1 = conv1 + b_conv1.dimshuffle('x', 0, 'x', 'x')
    theano.printing.Print("conv1.shape")(conv1.shape)

    border_mode = (conv_size2 - 1, 0)
    conv2 = conv2d(conv1, w_conv2, subsample=(2, 1), border_mode=border_mode)
    conv2 = relu(conv2 + b_conv2.dimshuffle('x', 0, 'x', 'x'))
    theano.printing.Print("conv2.shape")(conv2.shape)

    # Last axis is 1
    conv_out = conv2[:, :, :, 0].dimshuffle(2, 0, 1)
    theano.printing.Print("conv_out.shape")(conv_out.shape)

    conv_h1, convgate_h1 = conv_to_h1.proj(conv_out)
    conv_h2, convgate_h2 = conv_to_h2.proj(conv_out)

    u = tensor.arange(c_sym.shape[0]).dimshuffle('x', 'x', 0)
    u = tensor.cast(u, theano.config.floatX)

    def calc_phi(k_t, a_t, b_t, u_c):
        a_t = a_t.dimshuffle(0, 1, 'x')
        b_t = b_t.dimshuffle(0, 1, 'x')
        ss1 = (k_t.dimshuffle(0, 1, 'x') - u_c)**2
        ss2 = -b_t * ss1
        ss3 = a_t * tensor.exp(ss2)
        ss4 = ss3.sum(axis=1)
        return ss4

    def step(xinp_h1_t, xgate_h1_t, xinp_h2_t, xgate_h2_t, h1_tm1, h2_tm1,
コード例 #7
0
    softmax2_proj, = make_weights(n_proj, [n_softmax2], random_state)
    softmax2_b, = make_biases([n_softmax2])

    params += [softmax1_proj, softmax1_b, softmax2_proj, softmax2_b]
    biases += [softmax1_b, softmax2_b]

    inpt = X_sym[:-1]
    target = X_sym[1:]
    mask = X_mask_sym[1:]
    context = c_sym * c_mask_sym.dimshuffle(0, 1, 'x')

    pt1 = theano_one_hot(inpt[:, :, 0], n_classes=n_softmax1)
    pt2 = theano_one_hot(inpt[:, :, 1], n_classes=n_softmax2)
    inpt = tensor.concatenate((pt1, pt2), axis=-1)
    inpt_reduced = inpt.dot(inp_proj) + inp_b
    inp_h1, inpgate_h1 = inp_to_h1.proj(inpt_reduced)
    inp_h2, inpgate_h2 = inp_to_h2.proj(inpt_reduced)
    inp_h3, inpgate_h3 = inp_to_h3.proj(inpt_reduced)

    u = tensor.arange(c_sym.shape[0]).dimshuffle('x', 'x', 0)
    u = tensor.cast(u, theano.config.floatX)

    def calc_phi(k_t, a_t, b_t, u_c):
        a_t = a_t.dimshuffle(0, 1, 'x')
        b_t = b_t.dimshuffle(0, 1, 'x')
        ss1 = (k_t.dimshuffle(0, 1, 'x') - u_c)**2
        ss2 = -b_t * ss1
        ss3 = a_t * tensor.exp(ss2)
        ss4 = ss3.sum(axis=1)
        return ss4