コード例 #1
0
def test_kedro_mlflow_config_setup_tracking_priority(mocker, tmp_path,
                                                     config_dir):
    """Test if the mlflow_tracking uri set is the one of mlflow.yml
    if it also eist in credentials.

    Args:
        mocker ([type]): [description]
        tmp_path ([type]): [description]
        config_dir ([type]): [description]
    """
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    mocker.patch("kedro_mlflow.utils._is_kedro_project", lambda x: True)

    (tmp_path / "conf/base/credentials.yml").write_text(
        yaml.dump(dict(my_mlflow_creds=dict(mlflow_tracking_uri="mlruns2"))))

    config = KedroMlflowConfig(
        project_path=tmp_path,
        mlflow_tracking_uri="mlruns1",
        credentials="my_mlflow_creds",
    )
    context = load_context(tmp_path)
    config.setup(context)

    assert mlflow.get_tracking_uri() == (tmp_path / "mlruns1").as_uri()
コード例 #2
0
def test_kedro_mlflow_config_experiment_was_deleted(kedro_project_with_mlflow_conf):

    # create an experiment with the same name and then delete it
    mlflow_tracking_uri = (kedro_project_with_mlflow_conf / "mlruns").as_uri()
    mlflow_client = MlflowClient(mlflow_tracking_uri)
    mlflow_client.create_experiment("exp1")
    mlflow_client.delete_experiment(
        mlflow_client.get_experiment_by_name("exp1").experiment_id
    )

    # the config must restore properly the experiment
    config = KedroMlflowConfig(
        project_path=kedro_project_with_mlflow_conf,
        mlflow_tracking_uri="mlruns",
        experiment_opts=dict(name="exp1"),
    )

    project_metadata = _get_project_metadata(kedro_project_with_mlflow_conf)
    _add_src_to_path(project_metadata.source_dir, kedro_project_with_mlflow_conf)
    configure_project(project_metadata.package_name)
    with KedroSession.create(
        "fake_project", project_path=kedro_project_with_mlflow_conf
    ):
        config.setup()

    assert "exp1" in [exp.name for exp in config.mlflow_client.list_experiments()]
コード例 #3
0
def test_kedro_mlflow_config_setup_tracking_priority(kedro_project_with_mlflow_conf):
    """Test if the mlflow_tracking uri set is the one of mlflow.yml
    if it also eist in credentials.

    Args:
        mocker ([type]): [description]
        tmp_path ([type]): [description]
    """
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project

    (kedro_project_with_mlflow_conf / "conf/base/credentials.yml").write_text(
        yaml.dump(dict(my_mlflow_creds=dict(mlflow_tracking_uri="mlruns2")))
    )

    config = KedroMlflowConfig(
        project_path=kedro_project_with_mlflow_conf,
        mlflow_tracking_uri="mlruns1",
        credentials="my_mlflow_creds",
    )

    project_metadata = _get_project_metadata(kedro_project_with_mlflow_conf)
    _add_src_to_path(project_metadata.source_dir, kedro_project_with_mlflow_conf)
    configure_project(project_metadata.package_name)
    with KedroSession.create(
        "fake_project", project_path=kedro_project_with_mlflow_conf
    ):
        config.setup()

    assert (
        mlflow.get_tracking_uri()
        == (kedro_project_with_mlflow_conf / "mlruns1").as_uri()
    )
コード例 #4
0
def test_kedro_mlflow_config_bad_long_parameters_strategy(tmp_path):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    (tmp_path / ".kedro.yml").write_text(
        yaml.dump(dict(context_path="fake/path")))
    with pytest.raises(KedroMlflowConfigError,
                       match="'long_parameters_strategy' must be one of "):
        KedroMlflowConfig(
            project_path=tmp_path,
            node_hook_opts=dict(long_parameters_strategy="does_not_exist"),
        )
コード例 #5
0
def get_mlflow_config(context: KedroContext):
    try:
        conf_mlflow_yml = context.config_loader.get("mlflow*", "mlflow*/**")
    except MissingConfigException:
        raise KedroMlflowConfigError(
            "No 'mlflow.yml' config file found in environment. Use ``kedro mlflow init`` command in CLI to create a default config file."
        )
    conf_mlflow = KedroMlflowConfig(context.project_path)
    conf_mlflow.from_dict(conf_mlflow_yml)
    return conf_mlflow
コード例 #6
0
ファイル: test_config.py プロジェクト: CJHJ/kedro-mlflow
def test_kedro_mlflow_config_validate_uri_local(mocker, tmp_path, uri):
    mocker.patch("kedro_mlflow.utils._is_kedro_project", return_value=True)
    mocker.patch("mlflow.tracking.MlflowClient", return_value=None)
    mocker.patch(
        "kedro_mlflow.framework.context.config.KedroMlflowConfig._get_or_create_experiment",
        return_value=None,
    )

    config = KedroMlflowConfig(project_path=tmp_path)
    assert config._validate_uri(uri=uri).startswith(r"file:///")  # relative
コード例 #7
0
def test_kedro_mlflow_config_bad_long_parameters_strategy(
    kedro_project_with_mlflow_conf,
):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    with pytest.raises(
        KedroMlflowConfigError, match="'long_parameters_strategy' must be one of "
    ):
        KedroMlflowConfig(
            project_path=kedro_project_with_mlflow_conf,
            node_hook_opts=dict(long_parameters_strategy="does_not_exist"),
        )
コード例 #8
0
def test_from_dict_to_dict_idempotent(mocker, kedro_project_with_mlflow_conf):
    mocker.patch("mlflow.tracking.MlflowClient", return_value=None)
    mocker.patch(
        "kedro_mlflow.framework.context.config.KedroMlflowConfig._get_or_create_experiment",
        return_value=None,
    )

    config = KedroMlflowConfig(project_path=kedro_project_with_mlflow_conf)
    original_config_dict = config.to_dict()
    # modify config
    config.from_dict(original_config_dict)
    assert config.to_dict() == original_config_dict
コード例 #9
0
ファイル: test_config.py プロジェクト: CJHJ/kedro-mlflow
def test_kedro_mlflow_config_new_experiment_does_not_exists(mocker, tmp_path):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    mocker.patch("kedro_mlflow.utils._is_kedro_project", return_value=True)

    config = KedroMlflowConfig(
        project_path=tmp_path,
        mlflow_tracking_uri="mlruns",
        experiment_opts=dict(name="exp1"),
    )
    assert "exp1" in [
        exp.name for exp in config.mlflow_client.list_experiments()
    ]
コード例 #10
0
def get_mlflow_config(session: Optional[KedroSession] = None):
    session = session or get_current_session()
    context = session.load_context()
    try:
        conf_mlflow_yml = context.config_loader.get("mlflow*", "mlflow*/**")
    except MissingConfigException:
        raise KedroMlflowConfigError(
            "No 'mlflow.yml' config file found in environment. Use ``kedro mlflow init`` command in CLI to create a default config file."
        )
    conf_mlflow = KedroMlflowConfig(context.project_path)
    conf_mlflow.from_dict(conf_mlflow_yml)
    return conf_mlflow
コード例 #11
0
def get_mlflow_config(project_path=None, env="local"):
    if project_path is None:
        project_path = Path.cwd()
    project_path = Path(project_path)
    conf_paths = [
        str(project_path / "conf" / "base"),
        str(project_path / "conf" / env),
    ]
    config_loader = ConfigLoader(conf_paths=conf_paths)
    conf_mlflow_yml = config_loader.get("mlflow*", "mlflow*/**")
    conf_mlflow = KedroMlflowConfig(project_path=project_path)
    conf_mlflow.from_dict(conf_mlflow_yml)
    return conf_mlflow
コード例 #12
0
def test_kedro_mlflow_config_init(kedro_project_with_mlflow_conf):
    # kedro_project_with_mlflow_conf is a global fixture in conftest

    config = KedroMlflowConfig(project_path=kedro_project_with_mlflow_conf)
    assert config.to_dict() == dict(
        mlflow_tracking_uri=(kedro_project_with_mlflow_conf / "mlruns").as_uri(),
        credentials=None,
        disable_tracking=KedroMlflowConfig.DISABLE_TRACKING_OPTS,
        experiments=KedroMlflowConfig.EXPERIMENT_OPTS,
        run=KedroMlflowConfig.RUN_OPTS,
        ui=KedroMlflowConfig.UI_OPTS,
        hooks=dict(node=KedroMlflowConfig.NODE_HOOK_OPTS),
    )
コード例 #13
0
ファイル: test_config.py プロジェクト: CJHJ/kedro-mlflow
def test_kedro_mlflow_config_init(tmp_path):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    (tmp_path / ".kedro.yml").write_text(
        yaml.dump(dict(context_path="fake/path")))

    config = KedroMlflowConfig(project_path=tmp_path)
    assert config.to_dict() == dict(
        mlflow_tracking_uri=(tmp_path / "mlruns").as_uri(),
        experiments=KedroMlflowConfig.EXPERIMENT_OPTS,
        run=KedroMlflowConfig.RUN_OPTS,
        ui=KedroMlflowConfig.UI_OPTS,
        hooks=dict(node=KedroMlflowConfig.NODE_HOOK_OPTS),
    )
コード例 #14
0
def test_kedro_mlflow_config_setup_export_credentials(mocker, tmp_path,
                                                      config_dir):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    mocker.patch("kedro_mlflow.utils._is_kedro_project", lambda x: True)

    (tmp_path / "conf/base/credentials.yml").write_text(
        yaml.dump(dict(my_mlflow_creds=dict(fake_mlflow_cred="my_fake_cred"))))

    # the config must restore properly the experiment
    config = KedroMlflowConfig(project_path=tmp_path,
                               credentials="my_mlflow_creds")
    context = load_context(tmp_path)
    config.setup(context)

    assert os.environ["fake_mlflow_cred"] == "my_fake_cred"
コード例 #15
0
def test_kedro_mlflow_config_experiment_exists(mocker, tmp_path, config_dir):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    mocker.patch("kedro_mlflow.utils._is_kedro_project", return_value=True)

    # create an experiment with the same name
    mlflow_tracking_uri = (tmp_path / "mlruns").as_uri()
    MlflowClient(mlflow_tracking_uri).create_experiment("exp1")
    config = KedroMlflowConfig(
        project_path=tmp_path,
        mlflow_tracking_uri="mlruns",
        experiment_opts=dict(name="exp1"),
    )
    context = load_context(tmp_path)
    config.setup(context)
    assert "exp1" in [
        exp.name for exp in config.mlflow_client.list_experiments()
    ]
コード例 #16
0
def test_kedro_mlflow_config_setup_set_tracking_uri(mocker, tmp_path,
                                                    config_dir):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    mocker.patch("kedro_mlflow.utils._is_kedro_project", lambda x: True)

    # create an experiment with the same name and then delete it
    mlflow_tracking_uri = (tmp_path / "awesome_tracking").as_uri()

    # the config must restore properly the experiment
    config = KedroMlflowConfig(
        project_path=tmp_path,
        mlflow_tracking_uri="awesome_tracking",
        experiment_opts=dict(name="exp1"),
    )
    context = load_context(tmp_path)
    config.setup(context)

    assert mlflow.get_tracking_uri() == mlflow_tracking_uri
コード例 #17
0
def test_kedro_mlflow_config_new_experiment_does_not_exists(
    kedro_project_with_mlflow_conf,
):

    config = KedroMlflowConfig(
        project_path=kedro_project_with_mlflow_conf,
        mlflow_tracking_uri="mlruns",
        experiment_opts=dict(name="exp1"),
    )

    project_metadata = _get_project_metadata(kedro_project_with_mlflow_conf)
    _add_src_to_path(project_metadata.source_dir, kedro_project_with_mlflow_conf)
    configure_project(project_metadata.package_name)
    with KedroSession.create(
        "fake_project", project_path=kedro_project_with_mlflow_conf
    ):
        config.setup()

    assert "exp1" in [exp.name for exp in config.mlflow_client.list_experiments()]
コード例 #18
0
ファイル: test_config.py プロジェクト: CJHJ/kedro-mlflow
def test_kedro_mlflow_config_experiment_was_deleted(mocker, tmp_path):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    mocker.patch("kedro_mlflow.utils._is_kedro_project", lambda x: True)

    # create an experiment with the same name and then delete it
    mlflow_tracking_uri = (tmp_path / "mlruns").as_uri()
    mlflow_client = MlflowClient(mlflow_tracking_uri)
    mlflow_client.create_experiment("exp1")
    mlflow_client.delete_experiment(
        mlflow_client.get_experiment_by_name("exp1").experiment_id)

    # the config must restore properly the experiment
    config = KedroMlflowConfig(
        project_path=tmp_path,
        mlflow_tracking_uri="mlruns",
        experiment_opts=dict(name="exp1"),
    )
    assert "exp1" in [
        exp.name for exp in config.mlflow_client.list_experiments()
    ]
コード例 #19
0
def test_kedro_mlflow_config_setup_export_credentials(kedro_project_with_mlflow_conf):

    (kedro_project_with_mlflow_conf / "conf/base/credentials.yml").write_text(
        yaml.dump(dict(my_mlflow_creds=dict(fake_mlflow_cred="my_fake_cred")))
    )

    # the config must restore properly the experiment
    config = KedroMlflowConfig(
        project_path=kedro_project_with_mlflow_conf, credentials="my_mlflow_creds"
    )

    project_metadata = _get_project_metadata(kedro_project_with_mlflow_conf)
    _add_src_to_path(project_metadata.source_dir, kedro_project_with_mlflow_conf)
    configure_project(project_metadata.package_name)
    with KedroSession.create(
        "fake_project", project_path=kedro_project_with_mlflow_conf
    ):
        config.setup()

    assert os.environ["fake_mlflow_cred"] == "my_fake_cred"
コード例 #20
0
def test_kedro_mlflow_config_experiment_exists(mocker, kedro_project_with_mlflow_conf):

    # create an experiment with the same name
    mlflow_tracking_uri = (
        kedro_project_with_mlflow_conf / "conf" / "local" / "mlruns"
    ).as_uri()
    MlflowClient(mlflow_tracking_uri).create_experiment("exp1")
    config = KedroMlflowConfig(
        project_path=kedro_project_with_mlflow_conf,
        mlflow_tracking_uri="mlruns",
        experiment_opts=dict(name="exp1"),
    )

    project_metadata = _get_project_metadata(kedro_project_with_mlflow_conf)
    _add_src_to_path(project_metadata.source_dir, kedro_project_with_mlflow_conf)
    configure_project(project_metadata.package_name)
    with KedroSession.create(
        "fake_project", project_path=kedro_project_with_mlflow_conf
    ):
        config.setup()
    assert "exp1" in [exp.name for exp in config.mlflow_client.list_experiments()]
コード例 #21
0
def test_kedro_mlflow_config_setup_set_tracking_uri(kedro_project_with_mlflow_conf):

    # create an experiment with the same name and then delete it
    mlflow_tracking_uri = (kedro_project_with_mlflow_conf / "awesome_tracking").as_uri()

    # the config must restore properly the experiment
    config = KedroMlflowConfig(
        project_path=kedro_project_with_mlflow_conf,
        mlflow_tracking_uri="awesome_tracking",
        experiment_opts=dict(name="exp1"),
    )

    project_metadata = _get_project_metadata(kedro_project_with_mlflow_conf)
    _add_src_to_path(project_metadata.source_dir, kedro_project_with_mlflow_conf)
    configure_project(project_metadata.package_name)
    with KedroSession.create(
        "fake_project", project_path=kedro_project_with_mlflow_conf
    ):
        config.setup()

    assert mlflow.get_tracking_uri() == mlflow_tracking_uri
コード例 #22
0
def get_mlflow_config(context: KedroContext):

    conf_mlflow_yml = context.config_loader.get("mlflow*", "mlflow*/**")
    conf_mlflow = KedroMlflowConfig(context.project_path)
    conf_mlflow.from_dict(conf_mlflow_yml)
    return conf_mlflow
コード例 #23
0
ファイル: test_config.py プロジェクト: CJHJ/kedro-mlflow
def test_kedro_mlflow_config_init_wrong_path(tmp_path):
    # create a ".kedro.yml" file to identify "tmp_path" as the root of a kedro project
    with pytest.raises(KedroMlflowConfigError,
                       match="not a valid path to a kedro project"):
        KedroMlflowConfig(project_path=tmp_path)