def process(data_file, error_apriori, units): ''' Given a .csv data file in the format of (time, x, y, z) applies both filters, generates a filtered.csv data file, prints out the final keplerian elements computed from both Lamberts and Interpolation and finally plots the initial, filtered data set and the final orbit. Args: data_file (string): The name of the .csv file containing the positional data error_apriori (float): apriori estimation of the measurements error in km Returns: Runs the whole process of the program ''' # First read the csv file called "orbit" with the positional data print("Imported file format is:", read_data.detect_file_format(data_file)["file"]) print("") data = read_data.load_data(data_file) if (units == 'm'): # Transform m to km data[:, 1:4] = data[:, 1:4] / 1000 print( "***********Choose filter(s) in desired order of application***********" ) print( "(SPACE to toggle, UP/DOWN to navigate, RIGHT/LEFT to select/deselect and ENTER to submit)" ) print( "*if nothing is selected, Triple Moving Average followed by Savitzky Golay will be applied" ) questions = [ inquirer.Checkbox( 'filter', message="Select filter(s)", choices=[ 'None', 'Savitzky Golay Filter', 'Triple Moving Average Filter', 'Wiener Filter' ], ), ] choices = inquirer.prompt(questions) data_after_filter = data if (len(choices['filter']) == 0): print("Applying Triple Moving Average followed by Savitzky Golay...") # Apply the Triple moving average filter with window = 3 data_after_filter = triple_moving_average.generate_filtered_data( data_after_filter, 3) # Use the golay_window.py script to find the window for the Savitzky Golay filter based on the error you input window = golay_window.window(error_apriori, data_after_filter) polyorder = 3 if polyorder < window: # Apply the Savitzky Golay filter with window = window (51 for example_data/orbit.csv) and polynomial order = 3 data_after_filter = sav_golay.golay(data_after_filter, window, polyorder) else: for index, choice in enumerate(choices['filter']): if (choice == 'None'): print("Using the original data...") # no filter is applied data_after_filter = data_after_filter elif (choice == 'Savitzky Golay Filter'): print("Applying Savitzky Golay Filter...") # Use the golay_window.py script to find the window for the Savitzky Golay filter # based on the error you input window = golay_window.window(error_apriori, data_after_filter) polyorder = 3 if polyorder < window: # Apply the Savitzky Golay filter with window = window (51 for example_data/orbit.csv) and polynomial order = 3 data_after_filter = sav_golay.golay( data_after_filter, window, polyorder) elif (choice == 'Wiener Filter'): print("Applying Wiener Filter...") # Apply the Wiener filter data_after_filter = wiener.wiener_new(data_after_filter, 3) else: print("Applying Triple Moving Average Filter...") # Apply the Triple moving average filter with window = 3 data_after_filter = triple_moving_average.generate_filtered_data( data_after_filter, 3) # Compute the residuals between filtered data and initial data and then the sum and mean values of each axis res = data_after_filter[:, 1:4] - data[:, 1:4] sums = np.sum(res, axis=0) print("\nDisplaying the sum of the residuals for each axis") print(sums, "\n") means = np.mean(res, axis=0) print("Displaying the mean of the residuals for each axis") print(means, "\n") # Save the filtered data into a new csv called "filtered" np.savetxt("filtered.csv", data_after_filter, delimiter=",") print("***********Choose Method(s) for Orbit Determination***********") print( "(SPACE to toggle, UP/DOWN to navigate, RIGHT/LEFT to select/deselect and ENTER to submit)" ) print( "*if nothing is selected, Cubic Spline Interpolation will be used for Orbit Determination" ) questions = [ inquirer.Checkbox( 'method', message="Select Method(s)", choices=[ 'Lamberts Kalman', 'Cubic Spline Interpolation', 'Ellipse Best Fit', 'Gibbs 3 Vector', 'Gauss 3 Vector', 'MCMC (exp.)' ], ), ] choices = inquirer.prompt(questions) kep_elements = {} if (len(choices['method']) == 0): # Apply the interpolation method kep_inter = interpolation.main(data_after_filter) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_inter = lamberts_kalman.kalman(kep_inter, 0.01**2) kep_final_inter = np.transpose(kep_final_inter) kep_final_inter = np.resize(kep_final_inter, ((7, 1))) kep_final_inter[6, 0] = sgp4.rev_per_day(kep_final_inter[0, 0]) kep_elements['Cubic Spline Interpolation'] = kep_final_inter else: for index, choice in enumerate(choices['method']): if (choice == 'Lamberts Kalman'): # Apply Lambert Kalman method for the filtered data set #previously, all data... #kep_lamb = lamberts_kalman.create_kep(data_after_filter) # only three (3) observations from half an orbit. # also just two (2) observations are fine for lamberts. data = np.array([ data_after_filter[:, :][0], data_after_filter[:, :][len(data_after_filter) // 2], data_after_filter[:, :][-1] ]) kep_lamb = lamberts_kalman.create_kep(data) # Determination of orbit period semimajor_axis = kep_lamb[0][0] timestamps = data_after_filter[:, 0] index = get_timestamp_index_by_orbitperiod( semimajor_axis, timestamps) # enough data for half orbit data = np.array([ data_after_filter[:, :][0], data_after_filter[:, :][index // 2], data_after_filter[:, :][index] ]) kep_lamb = lamberts_kalman.create_kep(data) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_lamb = lamberts_kalman.kalman(kep_lamb, 0.01**2) kep_final_lamb = np.transpose(kep_final_lamb) kep_final_lamb = np.resize(kep_final_lamb, ((7, 1))) kep_final_lamb[6, 0] = sgp4.rev_per_day(kep_final_lamb[0, 0]) kep_elements['Lamberts Kalman'] = kep_final_lamb elif (choice == 'Cubic Spline Interpolation'): # Apply the interpolation method kep_inter = interpolation.main(data_after_filter) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_inter = lamberts_kalman.kalman(kep_inter, 0.01**2) kep_final_inter = np.transpose(kep_final_inter) kep_final_inter = np.resize(kep_final_inter, ((7, 1))) kep_final_inter[6, 0] = sgp4.rev_per_day(kep_final_inter[0, 0]) kep_elements['Cubic Spline Interpolation'] = kep_final_inter elif (choice == 'Ellipse Best Fit'): # Apply the ellipse best fit method kep_ellip = ellipse_fit.determine_kep(data_after_filter[:, 1:])[0] kep_final_ellip = np.transpose(kep_ellip) kep_final_ellip = np.resize(kep_final_ellip, ((7, 1))) kep_final_ellip[6, 0] = sgp4.rev_per_day(kep_final_ellip[0, 0]) kep_elements['Ellipse Best Fit'] = kep_final_ellip elif (choice == 'Gibbs 3 Vector'): # Apply the Gibbs method # first only with first, middle and last measurement R = np.array([ data_after_filter[:, 1:][0], data_after_filter[:, 1:][len(data_after_filter) // 2], data_after_filter[:, 1:][-1] ]) kep_gibbs = gibbs_method.gibbs_get_kep(R) # Determination of orbit period semimajor_axis = kep_gibbs[0][0] timestamps = data_after_filter[:, 0] index = get_timestamp_index_by_orbitperiod( semimajor_axis, timestamps) # enough data for half orbit R = np.array([ data_after_filter[:, 1:][0], data_after_filter[:, 1:][index // 2], data_after_filter[:, 1:][index] ]) kep_gibbs = gibbs_method.gibbs_get_kep(R) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_gibbs = lamberts_kalman.kalman(kep_gibbs, 0.01**2) kep_final_gibbs = np.transpose(kep_final_gibbs) kep_final_gibbs = np.resize(kep_final_gibbs, ((7, 1))) kep_final_gibbs[6, 0] = sgp4.rev_per_day(kep_final_gibbs[0, 0]) kep_elements['Gibbs 3 Vector'] = kep_final_gibbs elif (choice == 'Gauss 3 Vector'): # Apply the Gauss method # first only with first, middle and last measurement R = np.array([ data_after_filter[:, 1:][0], data_after_filter[:, 1:][len(data_after_filter) // 2], data_after_filter[:, 1:][-1] ]) t1 = data_after_filter[:, 0][0] t2 = data_after_filter[:, 0][len(data_after_filter) // 2] t3 = data_after_filter[:, 0][-1] v2 = gauss_method.gauss_method_get_velocity( R[0], R[1], R[2], t1, t2, t3) # Determination of orbit period semimajor_axis = oe.semimajor_axis(R[0], v2) timestamps = data_after_filter[:, 0] index = get_timestamp_index_by_orbitperiod( semimajor_axis, timestamps) # enough data for half orbit R = np.array([ data_after_filter[:, 1:][0], data_after_filter[:, 1:][index // 2], data_after_filter[:, 1:][index] ]) t1 = data_after_filter[:, 0][0] t2 = data_after_filter[:, 0][index // 2] t3 = data_after_filter[:, 0][index] v2 = gauss_method.gauss_method_get_velocity( R[0], R[1], R[2], t1, t2, t3) semimajor_axis = oe.semimajor_axis(R[0], v2) ecc = oe.eccentricity_v(R[1], v2) ecc = np.linalg.norm(ecc) inc = oe.inclination(R[1], v2) * 180.0 / np.pi AoP = oe.AoP(R[1], v2) * 180.0 / np.pi raan = oe.raan(R[1], v2) * 180.0 / np.pi true_anomaly = oe.true_anomaly(R[1], v2) * 180.0 / np.pi T_orbitperiod = oe.T_orbitperiod(semimajor_axis=semimajor_axis) n_mean_motion_perday = oe.n_mean_motion_perday(T_orbitperiod) kep_gauss = np.array([[ semimajor_axis, ecc, inc, AoP, raan, true_anomaly, n_mean_motion_perday ]]) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_gauss = lamberts_kalman.kalman(kep_gauss, 0.01**2) kep_final_gauss = np.transpose(kep_final_gauss) kep_final_gauss = np.resize(kep_final_gauss, ((7, 1))) kep_final_gauss[6, 0] = sgp4.rev_per_day(kep_final_gauss[0, 0]) kep_elements['Gauss 3 Vector'] = kep_final_gauss else: # apply mcmc method, a real optimizer # all data timestamps = data_after_filter[:, 0] R = np.array(data_after_filter[:, 1:]) # all data can make the MCMC very slow. so we just pick a few in random, but in order. timestamps_short = [] R_short = [] if len(timestamps) > 25: print( "Too many positions for MCMC. Just 25 positons are selected" ) # pick randomly, but in order and no duplicates l = list( np.linspace(0, len(timestamps) - 1, num=len(timestamps))) select_index = sorted(random.sample(list(l)[1:-1], k=23)) print(select_index) timestamps_short.append(timestamps[0]) R_short.append(R[0]) for select in range(len(select_index)): timestamps_short.append(timestamps[int( select_index[select])]) R_short.append(R[int(select_index[select])]) timestamps_short.append(timestamps[-1]) R_short.append(R[-1]) else: timestamps_short = timestamps R_short = R parameters = with_mcmc.fromposition(timestamps_short, R_short) r_a = parameters["r_a"] r_p = parameters["r_p"] AoP = parameters["AoP"] inc = parameters["inc"] raan = parameters["raan"] tp = parameters["tp"] semimajor_axis = (r_p + r_a) / 2.0 ecc = (r_a - r_p) / (r_a + r_p) T_orbitperiod = oe.T_orbitperiod(semimajor_axis=semimajor_axis) true_anomaly = tp / T_orbitperiod * 360.0 n_mean_motion_perday = oe.n_mean_motion_perday(T_orbitperiod) kep_mcmc = np.array([[ semimajor_axis, ecc, inc, AoP, raan, true_anomaly, n_mean_motion_perday ]]) kep_elements['MCMC (exp.)'] = kep_mcmc kep_final = np.zeros((7, len(kep_elements))) order = [] for index, key in enumerate(kep_elements): kep_final[:, index] = np.ravel(kep_elements[key]) order.append(str(key)) # Print the final orbital elements for all solutions kep_elements = [ "Semi major axis (a)(km)", "Eccentricity (e)", "Inclination (i)(deg)", "Argument of perigee (ω)(deg)", "Right acension of ascending node (Ω)(deg)", "True anomaly (v)(deg)", "Frequency (f)(rev/day)" ] for i in range(0, len(order)): print("\n******************Output for %s Method******************\n" % order[i]) for j in range(0, 7): print("%s: %.16f" % (kep_elements[j], kep_final[j, i])) print("\nShow plots? [y/n]") user_input = input() if (user_input == "y" or user_input == "Y"): for j in range(0, len(order)): # Plot the initial data set, the filtered data set and the final orbit # First we transform the set of keplerian elements into a state vector state = kep_state.kep_state(np.resize(kep_final[:, j], (7, 1))) # Then we produce more state vectors at varius times using a Runge Kutta algorithm keep_state = np.zeros((6, 150)) ti = 0.0 tf = 1.0 t_hold = np.zeros((150, 1)) x = state h = 0.1 tetol = 1e-04 for i in range(0, 150): keep_state[:, i] = np.ravel(rkf78.rkf78(6, ti, tf, h, tetol, x)) t_hold[i, 0] = tf tf = tf + 1 positions = keep_state[0:3, :] ## Finally we plot the graph mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = plt.axes(projection='3d') ax.plot(data[:, 1], data[:, 2], data[:, 3], ".", label='Initial data ') ax.plot(data_after_filter[:, 1], data_after_filter[:, 2], data_after_filter[:, 3], "k", linestyle='-', label='Filtered data') ax.plot(positions[0, :], positions[1, :], positions[2, :], "r-", label='Orbit after %s method' % order[j]) ax.legend() ax.can_zoom() ax.set_xlabel('x (km)') ax.set_ylabel('y (km)') ax.set_zlabel('z (km)') plt.show()
def process(data_file, error_apriori, units): ''' Given a .csv data file in the format of (time, x, y, z) applies both filters, generates a filtered.csv data file, prints out the final keplerian elements computed from both Lamberts and Interpolation and finally plots the initial, filtered data set and the final orbit. Args: data_file (string): The name of the .csv file containing the positional data error_apriori (float): apriori estimation of the measurements error in km Returns: Runs the whole process of the program ''' # First read the csv file called "orbit" with the positional data data = read_data.load_data(data_file) if (units == 'm'): # Transform m to km data[:, 1:4] = data[:, 1:4] / 1000 print( "***********Choose filter(s) in desired order of application***********" ) print( "(SPACE to toggle, UP/DOWN to navigate, RIGHT/LEFT to select/deselect and ENTER to submit)" ) print( "*if nothing is selected, Triple Moving Average followed by Savitzky Golay will be applied" ) questions = [ inquirer.Checkbox( 'filter', message="Select filter(s)", choices=['Savitzky Golay Filter', 'Triple Moving Average Filter'], ), ] choices = inquirer.prompt(questions) data_after_filter = data if (len(choices['filter']) == 0): print("Applying Triple Moving Average followed by Savitzky Golay...") # Apply the Triple moving average filter with window = 3 data_after_filter = triple_moving_average.generate_filtered_data( data_after_filter, 3) # Use the golay_window.py script to find the window for the Savitzky Golay filter based on the error you input window = golay_window.window(error_apriori, data_after_filter) # Apply the Savitzky Golay filter with window = window (51 for orbit.csv) and polynomial order = 3 data_after_filter = sav_golay.golay(data_after_filter, window, 3) else: for index, choice in enumerate(choices['filter']): if (choice == 'Savitzky Golay Filter'): print("Applying Savitzky Golay Filter...") # Use the golay_window.py script to find the window for the Savitzky Golay filter based on the error you input window = golay_window.window(error_apriori, data_after_filter) # Apply the Savitzky Golay filter with window = window (51 for orbit.csv) and polynomial order = 3 data_after_filter = sav_golay.golay(data_after_filter, window, 3) else: print("Applying Triple Moving Average Filter...") # Apply the Triple moving average filter with window = 3 data_after_filter = triple_moving_average.generate_filtered_data( data_after_filter, 3) # Compute the residuals between filtered data and initial data and then the sum and mean values of each axis res = data_after_filter[:, 1:4] - data[:, 1:4] sums = np.sum(res, axis=0) print("\nDisplaying the sum of the residuals for each axis") print(sums, "\n") means = np.mean(res, axis=0) print("Displaying the mean of the residuals for each axis") print(means, "\n") # Save the filtered data into a new csv called "filtered" np.savetxt("filtered.csv", data_after_filter, delimiter=",") print("***********Choose Method(s) for Orbit Determination***********") print( "(SPACE to toggle, UP/DOWN to navigate, RIGHT/LEFT to select/deselect and ENTER to submit)" ) print( "*if nothing is selected, Cubic Spline Interpolation will be used for Orbit Determination" ) questions = [ inquirer.Checkbox( 'method', message="Select Method(s)", choices=[ 'Lamberts Kalman', 'Cubic Spline Interpolation', 'Ellipse Best Fit', 'Gibbs 3 Vector' ], ), ] choices = inquirer.prompt(questions) kep_elements = {} if (len(choices['method']) == 0): # Apply the interpolation method kep_inter = interpolation.main(data_after_filter) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_inter = lamberts_kalman.kalman(kep_inter, 0.01**2) kep_final_inter = np.transpose(kep_final_inter) kep_final_inter = np.resize(kep_final_inter, ((7, 1))) kep_final_inter[6, 0] = sgp4.rev_per_day(kep_final_inter[0, 0]) kep_elements['Cubic Spline Interpolation'] = kep_final_inter else: for index, choice in enumerate(choices['method']): if (choice == 'Lamberts Kalman'): # Apply Lambert Kalman method for the filtered data set kep_lamb = lamberts_kalman.create_kep(data_after_filter) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_lamb = lamberts_kalman.kalman(kep_lamb, 0.01**2) kep_final_lamb = np.transpose(kep_final_lamb) kep_final_lamb = np.resize(kep_final_lamb, ((7, 1))) kep_final_lamb[6, 0] = sgp4.rev_per_day(kep_final_lamb[0, 0]) kep_elements['Lamberts Kalman'] = kep_final_lamb elif (choice == 'Cubic Spline Interpolation'): # Apply the interpolation method kep_inter = interpolation.main(data_after_filter) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_inter = lamberts_kalman.kalman(kep_inter, 0.01**2) kep_final_inter = np.transpose(kep_final_inter) kep_final_inter = np.resize(kep_final_inter, ((7, 1))) kep_final_inter[6, 0] = sgp4.rev_per_day(kep_final_inter[0, 0]) kep_elements['Cubic Spline Interpolation'] = kep_final_inter elif (choice == 'Ellipse Best Fit'): # Apply the ellipse best fit method kep_ellip = ellipse_fit.determine_kep(data_after_filter[:, 1:])[0] kep_final_ellip = np.transpose(kep_ellip) kep_final_ellip = np.resize(kep_final_ellip, ((7, 1))) kep_final_ellip[6, 0] = sgp4.rev_per_day(kep_final_ellip[0, 0]) kep_elements['Ellipse Best Fit'] = kep_final_ellip else: # Apply the Gibbs method kep_gibbs = gibbs_method.gibbs_get_kep(data_after_filter[:, 1:]) # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # We set an estimate of measurement variance R = 0.01 ** 2 kep_final_gibbs = lamberts_kalman.kalman(kep_gibbs, 0.01**2) kep_final_gibbs = np.transpose(kep_final_gibbs) kep_final_gibbs = np.resize(kep_final_gibbs, ((7, 1))) kep_final_gibbs[6, 0] = sgp4.rev_per_day(kep_final_gibbs[0, 0]) kep_elements['Gibbs 3 Vector'] = kep_final_gibbs kep_final = np.zeros((7, len(kep_elements))) order = [] for index, key in enumerate(kep_elements): kep_final[:, index] = np.ravel(kep_elements[key]) order.append(str(key)) # Print the final orbital elements for all solutions kep_elements = [ "Semi major axis (a)(km)", "Eccentricity (e)", "Inclination (i)(deg)", "Argument of perigee (ω)(deg)", "Right acension of ascending node (Ω)(deg)", "True anomaly (v)(deg)", "Frequency (f)(rev/day)" ] for i in range(0, len(order)): print("\n******************Output for %s Method******************\n" % order[i]) for j in range(0, 7): print("%s: %.16f" % (kep_elements[j], kep_final[j, i])) print("\nShow plots? [y/n]") user_input = input() if (user_input == "y" or user_input == "Y"): for j in range(0, len(order)): # Plot the initial data set, the filtered data set and the final orbit # First we transform the set of keplerian elements into a state vector state = kep_state.kep_state(np.resize(kep_final[:, j], (7, 1))) # Then we produce more state vectors at varius times using a Runge Kutta algorithm keep_state = np.zeros((6, 150)) ti = 0.0 tf = 1.0 t_hold = np.zeros((150, 1)) x = state h = 0.1 tetol = 1e-04 for i in range(0, 150): keep_state[:, i] = np.ravel(rkf78.rkf78(6, ti, tf, h, tetol, x)) t_hold[i, 0] = tf tf = tf + 1 positions = keep_state[0:3, :] ## Finally we plot the graph mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(data[:, 1], data[:, 2], data[:, 3], ".", label='Initial data ') ax.plot(data_after_filter[:, 1], data_after_filter[:, 2], data_after_filter[:, 3], "k", linestyle='-', label='Filtered data') ax.plot(positions[0, :], positions[1, :], positions[2, :], "r-", label='Orbit after %s method' % order[j]) ax.legend() ax.can_zoom() ax.set_xlabel('x (km)') ax.set_ylabel('y (km)') ax.set_zlabel('z (km)') plt.show()
def process(data_file, error_apriori, name): ''' Perform filtering and orbit determination methods. Applies filters and orbit determination techniques on the input data and saves the output in dst folder. Args: data_file (numpy array): Raw orbit data error_apriori (float): apriori estimation of the measurements error in km name (str): name of the file being processed ''' # Get positional data data = data_file # Units is km by default # Apply the Triple moving average filter with window = 3 data_after_filter = triple_moving_average.generate_filtered_data(data, 3) # Use the golay_window.py script to find the window for the savintzky golay filter based on the error you input window = golay_window.window(error_apriori, data_after_filter) # Apply the Savintzky - Golay filter with window = 31 and polynomail parameter = 6 data_after_filter = sav_golay.golay(data_after_filter, window, 3) # Compute the residuals between filtered data and initial data and then the sum and mean values of each axis res = data_after_filter[:, 1:4] - data[:, 1:4] sums = np.sum(res, axis=0) print("Displaying the sum of the residuals for each axis") print(sums) print(" ") means = np.mean(res, axis=0) print("Displaying the mean of the residuals for each axis") print(means) print(" ") # Save the filtered data into a new csv called "filtered" np.savetxt(os.getcwd() + "/example_data/DestinationCSV/" + "%s_filtered.csv" % (name), data_after_filter, delimiter=",") # Apply Lambert's solution for the filtered data set kep_lamb = lamberts_kalman.create_kep(data_after_filter) # Apply the interpolation method kep_inter = interpolation.main(data_after_filter) # Apply the Gibbs method kep_gibbs = gibbs_method.gibbs_get_kep(data_after_filter[:, 1:]) # Apply the ellipse best fit method kep_ellip = ellipse_fit.determine_kep(data_after_filter[:, 1:])[0] # Apply Kalman filters to find the best approximation of the keplerian elements for all solutions # set we a estimate of measurement vatiance R = 0.01 ** 2 kep_final_lamb = lamberts_kalman.kalman(kep_lamb, 0.01**2) kep_final_lamb = np.transpose(kep_final_lamb) kep_final_lamb = np.resize(kep_final_lamb, ((7, 1))) kep_final_lamb[6, 0] = sgp4.rev_per_day(kep_final_lamb[0, 0]) kep_final_inter = lamberts_kalman.kalman(kep_inter, 0.01**2) kep_final_inter = np.transpose(kep_final_inter) kep_final_inter = np.resize(kep_final_inter, ((7, 1))) kep_final_inter[6, 0] = sgp4.rev_per_day(kep_final_inter[0, 0]) kep_final_ellip = np.transpose(kep_ellip) kep_final_ellip = np.resize(kep_final_ellip, ((7, 1))) kep_final_ellip[6, 0] = sgp4.rev_per_day(kep_final_ellip[0, 0]) kep_final_gibbs = lamberts_kalman.kalman(kep_gibbs, 0.01**2) kep_final_gibbs = np.transpose(kep_final_gibbs) kep_final_gibbs = np.resize(kep_final_gibbs, ((7, 1))) kep_final_gibbs[6, 0] = sgp4.rev_per_day(kep_final_gibbs[0, 0]) kep_final = np.zeros((7, 4)) kep_final[:, 0] = np.ravel(kep_final_lamb) kep_final[:, 1] = np.ravel(kep_final_inter) kep_final[:, 2] = np.ravel(kep_final_ellip) kep_final[:, 3] = np.ravel(kep_final_gibbs) # Print the final orbital elements for all solutions kep_elements = [ "Semi major axis (a)(km)", "Eccentricity (e)", "Inclination (i)(deg)", "Argument of perigee (ω)(deg)", "Right acension of ascending node (Ω)(deg)", "True anomaly (v)(deg)", "Frequency (f)(rev/day)" ] det_methods = [ "Lamberts Kalman", "Spline Interpolation", "Ellipse Best Fit", "Gibbs 3 Vector" ] method_name = ["lamb", "inter", "ellip", "gibb"] for i in range(0, 4): print("\n******************Output for %s Method******************\n" % det_methods[i]) j = 0 for j in range(0, 7): print("%s: %.16f\n" % (kep_elements[j], kep_final[j, i])) print("\nSave plots? [y/n]") user_input = input() if (user_input == "y" or user_input == "Y"): for j in range(0, 4): # Plot the initial data set, the filtered data set and the final orbit # First we transform the set of keplerian elements into a state vector state = kep_state.kep_state(np.resize(kep_final[:, j], (7, 1))) # Then we produce more state vectors at varius times using a Runge Kutta algorithm keep_state = np.zeros((6, 150)) ti = 0.0 tf = 1.0 t_hold = np.zeros((150, 1)) x = state h = 0.1 tetol = 1e-04 for i in range(0, 150): keep_state[:, i] = np.ravel(rkf78.rkf78(6, ti, tf, h, tetol, x)) t_hold[i, 0] = tf tf = tf + 1 positions = keep_state[0:3, :] ## Finally we plot the graph mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(data[:, 1], data[:, 2], data[:, 3], ".", label='Initial data ') ax.plot(data_after_filter[:, 1], data_after_filter[:, 2], data_after_filter[:, 3], "k", linestyle='-', label='Filtered data') ax.plot(positions[0, :], positions[1, :], positions[2, :], "r-", label='Orbit after %s method' % det_methods[j]) ax.legend() ax.can_zoom() ax.set_xlabel('x (km)') ax.set_ylabel('y (km)') ax.set_zlabel('z (km)') plt.savefig(os.getcwd() + "/example_data/DestinationSVG/" + '%s_%s.svg' % (name, method_name[j]), format="svg") print("saved %s_%s.svg" % (name, method_name[j]))