コード例 #1
0
def yolo_head(graph, feats, anchors, num_classes):
    with graph.as_default():
        num_anchors = len(anchors)
        anchors_tensor = K.reshape(K.variable(anchors),
                                   [1, 1, 1, num_anchors, 2])

        conv_dims = K.shape(feats)[1:3]
        conv_height_index = K.arange(0, stop=conv_dims[0])
        conv_width_index = K.arange(0, stop=conv_dims[1])
        conv_height_index = K.tile(conv_height_index, [conv_dims[1]])

        conv_width_index = K.tile(K.expand_dims(conv_width_index, 0),
                                  [conv_dims[0], 1])
        conv_width_index = K.flatten(K.transpose(conv_width_index))
        conv_index = K.transpose(K.stack([conv_height_index,
                                          conv_width_index]))
        conv_index = K.reshape(conv_index,
                               [1, conv_dims[0], conv_dims[1], 1, 2])
        conv_index = K.cast(conv_index, K.dtype(feats))

        feats = K.reshape(
            feats,
            [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
        conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]),
                           K.dtype(feats))

        box_xy = K.sigmoid(feats[..., :2])
        box_wh = K.exp(feats[..., 2:4])
        box_confidence = K.sigmoid(feats[..., 4:5])
        box_class_probs = K.softmax(feats[..., 5:])

        box_xy = (box_xy + conv_index) / conv_dims
        box_wh = box_wh * anchors_tensor / conv_dims

        return box_xy, box_wh, box_confidence, box_class_probs
コード例 #2
0
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3]  # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
                    [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
                    [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats,
        [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(
        grid_shape[::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(
        input_shape[::-1], K.dtype(feats))
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs
コード例 #3
0
 def get_initial_state(self, inputs):
     if type(self.model.input) is not list:
         return []
     try:
         batch_size = K.int_shape(inputs)[0]
     except:
         batch_size = None
     state_shapes = list(map(K.int_shape, self.model.input[1:]))
     states = []
     if self.readout:
         state_shapes.pop()
         # default value for initial_readout is handled in call()
     for shape in state_shapes:
         if None in shape[1:]:
             raise Exception(
                 'Only the batch dimension of a state can be left unspecified. Got state with shape '
                 + str(shape))
         if shape[0] is None:
             ndim = K.ndim(inputs)
             z = K.zeros_like(inputs)
             slices = [slice(None)] + [0] * (ndim - 1)
             z = z[slices]  # (batch_size,)
             state_ndim = len(shape)
             z = K.reshape(z, (-1, ) + (1, ) * (state_ndim - 1))
             z = K.tile(z, (1, ) + tuple(shape[1:]))
             states.append(z)
         else:
             states.append(K.zeros(shape))
     state_initializer = self.state_initializer
     if state_initializer:
         # some initializers don't accept symbolic shapes
         for i in range(len(state_shapes)):
             if state_shapes[i][0] is None:
                 if hasattr(self, 'batch_size'):
                     state_shapes[i] = (
                         self.batch_size, ) + state_shapes[i][1:]
             if None in state_shapes[i]:
                 state_shapes[i] = K.shape(states[i])
         num_state_init = len(state_initializer)
         num_state = self.num_states
         assert num_state_init == num_state, 'RNN has ' + str(
             num_state) + ' states, but was provided ' + str(
                 num_state_init) + ' state initializers.'
         for i in range(len(states)):
             init = state_initializer[i]
             shape = state_shapes[i]
             try:
                 if not isinstance(init, initializers.Zeros):
                     states[i] = init(shape)
             except:
                 raise Exception(
                     'Seems the initializer ' + init.__class__.__name__ +
                     ' does not support symbolic shapes(' + str(shape) +
                     '). Try providing the full input shape (include batch dimension) for you RecurrentModel.'
                 )
     return states
コード例 #4
0
ファイル: test_backends.py プロジェクト: CheRaissi/keras
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_rep = KTH.eval(KTH.tile(arr_th, n))
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
コード例 #5
0
ファイル: test_backends.py プロジェクト: cnvrg/keras
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_rep = KTH.eval(KTH.tile(arr_th, n))
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
コード例 #6
0
ファイル: backend_test.py プロジェクト: zhliaoli/keras
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_z = KTH.tile(arr_th, n)
        th_rep = KTH.eval(th_z)
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
        if hasattr(th_z, '_keras_shape'):
            assert th_z._keras_shape == th_rep.shape
コード例 #7
0
ファイル: backend_test.py プロジェクト: oarriaga/keras
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_z = KTH.tile(arr_th, n)
        th_rep = KTH.eval(th_z)
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
        if hasattr(th_z, '_keras_shape'):
            assert th_z._keras_shape == th_rep.shape

        # test theano shape inference when
        # input shape has None entries
        if K.backend() == 'theano':
            x = K.placeholder(shape=(None, 4))
            n = 2
            y = KTH.tile(x, n)
            assert y._keras_shape == (None, 8)
            n = (4, 3)
            y = K.tile(x, n)
            assert y._keras_shape == (None, 12)
コード例 #8
0
    def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        arr_th = KTH.variable(arr)
        arr_tf = KTF.variable(arr)

        n = (2, 1)
        th_z = KTH.tile(arr_th, n)
        th_rep = KTH.eval(th_z)
        tf_rep = KTF.eval(KTF.tile(arr_tf, n))
        assert_allclose(tf_rep, th_rep, atol=1e-05)
        if hasattr(th_z, '_keras_shape'):
            assert th_z._keras_shape == th_rep.shape

        # test theano shape inference when
        # input shape has None entries
        if K.backend() == 'theano':
            x = K.placeholder(shape=(None, 4))
            n = 2
            y = KTH.tile(x, n)
            assert y._keras_shape == (None, 8)
            n = (4, 3)
            y = K.tile(x, n)
            assert y._keras_shape == (None, 12)
コード例 #9
0
    def call(self,
             inputs,
             initial_state=None,
             initial_readout=None,
             ground_truth=None,
             mask=None,
             training=None):
        # input shape: `(samples, time (padded with zeros), input_dim)`
        # note that the .build() method of subclasses MUST define
        # self.input_spec and self.state_spec with complete input shapes.
        if type(mask) is list:
            mask = mask[0]
        if self.model is None:
            raise Exception('Empty RecurrentModel.')
        num_req_states = self.num_states
        if self.readout:
            num_actual_states = num_req_states - 1
        else:
            num_actual_states = num_req_states
        if type(inputs) is list:
            inputs_list = inputs[:]
            inputs = inputs_list.pop(0)
            initial_states = inputs_list[:num_actual_states]
            if len(initial_states) > 0:
                if self._is_optional_input_placeholder(initial_states[0]):
                    initial_states = self.get_initial_state(inputs)
            inputs_list = inputs_list[num_actual_states:]
            if self.readout:
                initial_readout = inputs_list.pop(0)
                if self.teacher_force:
                    ground_truth = inputs_list.pop()
        else:
            if initial_state is not None:
                if not isinstance(initial_state, (list, tuple)):
                    initial_states = [initial_state]
                else:
                    initial_states = list(initial_state)
                if self._is_optional_input_placeholder(initial_states[0]):
                    initial_states = self.get_initial_state(inputs)

            elif self.stateful:
                initial_states = self.states
            else:
                initial_states = self.get_initial_state(inputs)
        if self.readout:
            if initial_readout is None or self._is_optional_input_placeholder(
                    initial_readout):
                output_shape = K.int_shape(_to_list((self.model.output))[0])
                output_ndim = len(output_shape)
                input_ndim = K.ndim(inputs)
                initial_readout = K.zeros_like(inputs)
                slices = [slice(None)] + [0] * (input_ndim - 1)
                initial_readout = initial_readout[slices]  # (batch_size,)
                initial_readout = K.reshape(initial_readout,
                                            (-1, ) + (1, ) * (output_ndim - 1))
                initial_readout = K.tile(initial_readout,
                                         (1, ) + tuple(output_shape[1:]))
            initial_states.append(initial_readout)
            if self.teacher_force:
                if ground_truth is None or self._is_optional_input_placeholder(
                        ground_truth):
                    raise Exception(
                        'ground_truth must be provided for RecurrentModel with teacher_force=True.'
                    )
                if K.backend() == 'tensorflow':
                    with tf.control_dependencies(None):
                        counter = K.zeros((1, ))
                else:
                    counter = K.zeros((1, ))
                counter = K.cast(counter, 'int32')
                initial_states.insert(-1, counter)
                initial_states[-2]
                initial_states.insert(-1, ground_truth)
                num_req_states += 2
        if len(initial_states) != num_req_states:
            raise ValueError('Layer requires ' + str(num_req_states) +
                             ' states but was passed ' +
                             str(len(initial_states)) + ' initial states.')
        input_shape = K.int_shape(inputs)
        if self.unroll and input_shape[1] is None:
            raise ValueError('Cannot unroll a RNN if the '
                             'time dimension is undefined. \n'
                             '- If using a Sequential model, '
                             'specify the time dimension by passing '
                             'an `input_shape` or `batch_input_shape` '
                             'argument to your first layer. If your '
                             'first layer is an Embedding, you can '
                             'also use the `input_length` argument.\n'
                             '- If using the functional API, specify '
                             'the time dimension by passing a `shape` '
                             'or `batch_shape` argument to your Input layer.')
        preprocessed_input = self.preprocess_input(inputs, training=None)
        constants = self.get_constants(inputs, training=None)
        if self.decode:
            initial_states.insert(0, inputs)
            preprocessed_input = K.zeros((1, self.output_length, 1))
            input_length = self.output_length
        else:
            input_length = input_shape[1]
        if self.uses_learning_phase:
            with learning_phase_scope(0):
                last_output_test, outputs_test, states_test, updates = rnn(
                    self.step,
                    preprocessed_input,
                    initial_states,
                    go_backwards=self.go_backwards,
                    mask=mask,
                    constants=constants,
                    unroll=self.unroll,
                    input_length=input_length)
            with learning_phase_scope(1):
                last_output_train, outputs_train, states_train, updates = rnn(
                    self.step,
                    preprocessed_input,
                    initial_states,
                    go_backwards=self.go_backwards,
                    mask=mask,
                    constants=constants,
                    unroll=self.unroll,
                    input_length=input_length)

            last_output = K.in_train_phase(last_output_train,
                                           last_output_test,
                                           training=training)
            outputs = K.in_train_phase(outputs_train,
                                       outputs_test,
                                       training=training)
            states = []
            for state_train, state_test in zip(states_train, states_test):
                states.append(
                    K.in_train_phase(state_train,
                                     state_test,
                                     training=training))

        else:
            last_output, outputs, states, updates = rnn(
                self.step,
                preprocessed_input,
                initial_states,
                go_backwards=self.go_backwards,
                mask=mask,
                constants=constants,
                unroll=self.unroll,
                input_length=input_length)
        states = list(states)
        if self.decode:
            states.pop(0)
        if self.readout:
            states.pop()
            if self.teacher_force:
                states.pop()
                states.pop()
        if len(updates) > 0:
            self.add_update(updates)
        if self.stateful:
            updates = []
            for i in range(len(states)):
                updates.append((self.states[i], states[i]))
            self.add_update(updates, inputs)

        # Properly set learning phase
        if 0 < self.dropout + self.recurrent_dropout:
            last_output._uses_learning_phase = True
            outputs._uses_learning_phase = True

        if self.return_sequences:
            y = outputs
        else:
            y = last_output
        if self.return_states:
            return [y] + states
        else:
            return y