def evaluate( self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, ): model._validate_or_infer_batch_size(batch_size, steps, x) training_utils_v1.check_generator_arguments(y, sample_weight) return evaluate_generator( model, x, steps=steps, verbose=verbose, callbacks=callbacks, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, )
def fit( self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False, ): model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) training_utils_v1.check_generator_arguments( y, sample_weight, validation_split=validation_split) return fit_generator( model, x, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, validation_freq=validation_freq, class_weight=class_weight, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, shuffle=shuffle, initial_epoch=initial_epoch, steps_name="steps_per_epoch", )