コード例 #1
0
    def test_merge_method_seq_concat(self):
        bx1 = BLayer.Input(shape=(10, ))
        bx1_1 = BLayer.Input(shape=(10, ))
        bx2 = BLayer.Input(shape=(10, ))
        by1 = BLayer.Dense(12, activation="sigmoid")(bx1)
        bbranch1_node = BModel(bx1, by1)(bx1_1)
        bbranch2 = BSequential()
        bbranch2.add(BLayer.Dense(12, input_dim=10))
        bbranch2_node = bbranch2(bx2)
        bz = BLayer.merge([bbranch1_node, bbranch2_node], mode="concat")
        bmodel = BModel([bx1_1, bx2], bz)

        kx1 = KLayer.Input(shape=(10, ))
        kx2 = KLayer.Input(shape=(10, ))
        ky1 = KLayer.Dense(12, activation="sigmoid")(kx1)
        kbranch1_node = KModel(kx1, ky1)(kx1)
        kbranch2 = KSequential()
        kbranch2.add(KLayer.Dense(12, input_dim=10))
        kbranch2_node = kbranch2(kx2)
        kz = KLayer.merge([kbranch1_node, kbranch2_node], mode="concat")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 10]), np.random.random([2, 10])]
        self.compare_newapi(kmodel, bmodel, input_data,
                            self.convert_two_dense_model)
コード例 #2
0
    def test_merge_method_model_concat(self):
        zx1 = ZLayer.Input(shape=(4, ))
        zx2 = ZLayer.Input(shape=(5, ))
        zy1 = ZLayer.Dense(6, activation="sigmoid")(zx1)
        zbranch1 = ZModel(zx1, zy1)(zx1)
        zbranch2 = ZLayer.Dense(8)(zx2)
        zz = ZLayer.merge([zbranch1, zbranch2], mode="concat")
        zmodel = ZModel([zx1, zx2], zz)

        kx1 = KLayer.Input(shape=(4, ))
        kx2 = KLayer.Input(shape=(5, ))
        ky1 = KLayer.Dense(6, activation="sigmoid")(kx1)
        kbranch1 = KModel(kx1, ky1)(kx1)
        kbranch2 = KLayer.Dense(8)(kx2)
        kz = KLayer.merge([kbranch1, kbranch2], mode="concat")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 4]), np.random.random([2, 5])]
        self.compare_layer(kmodel, zmodel, input_data, self.convert_two_dense)
コード例 #3
0
    def test_merge_method_model_concat(self):
        bx1 = BLayer.Input(shape=(4, ))
        bx2 = BLayer.Input(shape=(5, ))
        by1 = BLayer.Dense(6, activation="sigmoid")(bx1)
        bbranch1 = BModel(bx1, by1)(bx1)
        bbranch2 = BLayer.Dense(8)(bx2)
        bz = BLayer.merge([bbranch1, bbranch2], mode="concat")
        bmodel = BModel([bx1, bx2], bz)

        kx1 = KLayer.Input(shape=(4, ))
        kx2 = KLayer.Input(shape=(5, ))
        ky1 = KLayer.Dense(6, activation="sigmoid")(kx1)
        kbranch1 = KModel(kx1, ky1)(kx1)
        kbranch2 = KLayer.Dense(8)(kx2)
        kz = KLayer.merge([kbranch1, kbranch2], mode="concat")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 4]), np.random.random([2, 5])]
        self.compare_newapi(kmodel, bmodel, input_data,
                            self.convert_two_dense_model)
コード例 #4
0
    def test_merge_method_seq_concat(self):
        zx1 = ZLayer.Input(shape=(10, ))
        zx2 = ZLayer.Input(shape=(10, ))
        zy1 = ZLayer.Dense(12, activation="sigmoid")(zx1)
        zbranch1_node = ZModel(zx1, zy1)(zx1)
        zbranch2 = ZSequential()
        zbranch2.add(ZLayer.Dense(12, input_dim=10))
        zbranch2_node = zbranch2(zx2)
        zz = ZLayer.merge([zbranch1_node, zbranch2_node], mode="concat")
        zmodel = ZModel([zx1, zx2], zz)

        kx1 = KLayer.Input(shape=(10, ))
        kx2 = KLayer.Input(shape=(10, ))
        ky1 = KLayer.Dense(12, activation="sigmoid")(kx1)
        kbranch1_node = KModel(kx1, ky1)(kx1)
        kbranch2 = KSequential()
        kbranch2.add(KLayer.Dense(12, input_dim=10))
        kbranch2_node = kbranch2(kx2)
        kz = KLayer.merge([kbranch1_node, kbranch2_node], mode="concat")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 10]), np.random.random([2, 10])]
        self.compare_layer(kmodel, zmodel, input_data, self.convert_two_dense)
コード例 #5
0
    def test_merge_method_sum(self):
        zx1 = ZLayer.Input(shape=(8, ))
        zx2 = ZLayer.Input(shape=(6, ))
        zy1 = ZLayer.Dense(10)(zx1)
        zy2 = ZLayer.Dense(10)(zx2)
        zz = ZLayer.merge([zy1, zy2], mode="sum")
        zmodel = ZModel([zx1, zx2], zz, name="graph1")

        kx1 = KLayer.Input(shape=(8, ))
        kx2 = KLayer.Input(shape=(6, ))
        ky1 = KLayer.Dense(10)(kx1)
        ky2 = KLayer.Dense(10)(kx2)
        kz = kmerge([ky1, ky2], mode="sum")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 8]), np.random.random([2, 6])]
        self.compare_layer(kmodel, zmodel, input_data, self.convert_two_dense)
コード例 #6
0
    def test_merge_method_sum(self):
        bx1 = BLayer.Input(shape=(8, ))
        bx2 = BLayer.Input(shape=(6, ))
        by1 = BLayer.Dense(10)(bx1)
        by2 = BLayer.Dense(10)(bx2)
        bz = BLayer.merge([by1, by2], mode="sum")
        bmodel = BModel([bx1, bx2], bz, name="graph1")

        kx1 = KLayer.Input(shape=(8, ))
        kx2 = KLayer.Input(shape=(6, ))
        ky1 = KLayer.Dense(10)(kx1)
        ky2 = KLayer.Dense(10)(kx2)
        kz = kmerge([ky1, ky2], mode="sum")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 8]), np.random.random([2, 6])]
        self.compare_newapi(kmodel, bmodel, input_data,
                            self.convert_two_dense_model)