def kullback_leibler_divergence(y_true, y_pred): '''Calculates the Kullback-Leibler (KL) divergence between prediction and target values. ''' y_true = K.clip(y_true, K.epsilon(), 1) y_pred = K.clip(y_pred, K.epsilon(), 1) return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
def recall(y_true, y_pred): '''Calculates the recall, a metric for multi-label classification of how many relevant items are selected. ''' true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall
def precision(y_true, y_pred): '''Calculates the precision, a metric for multi-label classification of how many selected items are relevant. ''' true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision
def fbeta_score(y_true, y_pred, beta=1): '''Calculates the F score, the weighted harmonic mean of precision and recall. This is useful for multi-label classification, where input samples can be classified as sets of labels. By only using accuracy (precision) a model would achieve a perfect score by simply assigning every class to every input. In order to avoid this, a metric should penalize incorrect class assignments as well (recall). The F-beta score (ranged from 0.0 to 1.0) computes this, as a weighted mean of the proportion of correct class assignments vs. the proportion of incorrect class assignments. With beta = 1, this is equivalent to a F-measure. With beta < 1, assigning correct classes becomes more important, and with beta > 1 the metric is instead weighted towards penalizing incorrect class assignments. ''' if beta < 0: raise ValueError('The lowest choosable beta is zero (only precision).') # If there are no true positives, fix the F score at 0 like sklearn. if K.sum(K.round(K.clip(y_true, 0, 1))) == 0: return 0 p = precision(y_true, y_pred) r = recall(y_true, y_pred) bb = beta**2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score
def matthews_correlation(y_true, y_pred): '''Calculates the Matthews correlation coefficient measure for quality of binary classification problems. ''' y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pred_neg = 1 - y_pred_pos y_pos = K.round(K.clip(y_true, 0, 1)) y_neg = 1 - y_pos tp = K.sum(y_pos * y_pred_pos) tn = K.sum(y_neg * y_pred_neg) fp = K.sum(y_neg * y_pred_pos) fn = K.sum(y_pos * y_pred_neg) numerator = (tp * tn - fp * fn) denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) return numerator / (denominator + K.epsilon())