コード例 #1
0
def build_model():
    model = Sequential()

    model.add(RandomRotation(factor=0.45))

    model.add(InputLayer(input_shape=(224, 224, 1)))

    model.add(Conv2D(1, (2, 2), activation='relu', padding='same'))

    model.add(Conv2D(32, (2, 2), strides=2, activation='relu', padding='same'))

    model.add(Conv2D(64, (2, 2), strides=2, activation='relu', padding='same'))

    model.add(Conv2D(128, (2, 2), strides=2, activation='relu',
                     padding='same'))

    model.add(
        Conv2DTranspose(128, (2, 2),
                        strides=2,
                        activation='relu',
                        padding='same'))

    model.add(
        Conv2DTranspose(64, (2, 2),
                        strides=2,
                        activation='relu',
                        padding='same'))

    model.add(
        Conv2DTranspose(2, (2, 2),
                        strides=2,
                        activation='relu',
                        padding='same'))

    return model
コード例 #2
0
def create_and_train_model():

    #Importing data
    mnist = keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    #Normalizing the input
    x_train = keras.utils.normalize(x_train, axis=1)
    x_test = keras.utils.normalize(x_test, axis=1)
    #reshape the arrays for the CNN
    x_train_r = np.expand_dims(x_train, axis=3)
    x_test_r = np.expand_dims(x_test, axis=3)

    #Translating and Rotating the training set
    data_augmentation = Sequential([
        RandomTranslation(0.05, 0.05, fill_mode='constant'),
        RandomRotation(0.02, fill_mode='constant')
    ])
    x_train_r = data_augmentation(x_train_r)

    model = Sequential()
    model.add(
        Conv2D(32,
               kernel_size=5,
               padding='same',
               activation='relu',
               input_shape=(28, 28, 1)))
    model.add(MaxPooling2D())
    model.add(Dropout(0.2))
    model.add(Conv2D(64, kernel_size=5, padding='same', activation='relu'))
    model.add(MaxPooling2D(padding='same'))
    model.add(Dropout(0.2))
    model.add(Flatten())
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(10, activation='softmax'))
    model.compile(optimizer="adam",
                  loss="sparse_categorical_crossentropy",
                  metrics=["accuracy"])

    monitor = EarlyStopping(monitor='val_loss',
                            min_delta=1e-3,
                            patience=5,
                            verbose=1,
                            mode='auto',
                            restore_best_weights=True)

    model.fit(x_train_r,
              y_train,
              validation_data=(x_test_r, y_test),
              callbacks=[monitor],
              verbose=1,
              epochs=20)

    model.save('number_recognition_CNN')
コード例 #3
0
def preprocessing_layers(a, hp):
    #a = preprocess_input(a)#Rescaling(1/255)(a)
    translate = hp.Float("translate", 0, 0.5, step=0.1, default=0.2)
    a = RandomTranslation( 
        #hp.Float("t_x", 0, 0.5, step=0.1, default=0.2), 
        #hp.Float("t_y", 0, 0.5, step=0.1, default=0.2), 
        translate,
        translate,
        fill_mode="reflect",interpolation="bilinear",)(a)
    a = RandomFlip()(a)
    a = RandomZoom(hp.Float("zoom", 0, 0.5, step=0.1, default=0.25))(a)
    a = RandomRotation(hp.Float("rotation", 0, 2, step=0.1, default=2))(a)
    #a = RandomHeight(0.2)(a)
    #a = RandomWidth(0.2)(a)
    
    return a
コード例 #4
0
def get_data(path, num_classes):
    #the value passed in split to get training and testing is as per the requirement mentioned
    #for caltech101 and caltech256 dataset it gets randomly 30 images from class for training and remaining for testing
    #fetch training data
    train = tf.keras.preprocessing.image_dataset_from_directory(
        directory=path,
        labels="inferred",
        label_mode="int",
        validation_split=0.6654,
        subset="training",
        seed=123,
        image_size=(224, 224),
        batch_size=1)

    #fetch testing data
    test = tf.keras.preprocessing.image_dataset_from_directory(
        directory=path,
        labels="inferred",
        label_mode="int",
        validation_split=0.6654,
        subset="validation",
        seed=123,
        image_size=(224, 224),
        batch_size=1)

    #noramlize the data
    normalization = Rescaling(1. / 255)
    #data agumentation
    train_aug = Sequential([
        Rescaling(1. / 255),
        RandomFlip("horizontal_and_vertical"),
        RandomRotation(0.2)
    ])

    #normalize train and test data apply one hot encoding on labels and squeeze train and test to its required dimension
    #apply train_aug on train set and normalization only on test set
    #becomes equal to the shape of the input to the convolution network
    train_n = train.map(lambda x, y: (tf.squeeze(train_aug(x)),
                                      tf.squeeze(tf.one_hot(y, num_classes))))
    test_n = test.map(lambda x, y: (tf.squeeze(normalization(x)),
                                    tf.squeeze(tf.one_hot(y, num_classes))))

    #the output of train_n and test_n is mapped dataset so we iterate over the train_n and test_n
    #and store the features and labels in list
    train_inputs = []  #for training features
    train_labels = []  #for training labels
    test_inputs = []  #for testing features
    test_labels = []  #for testing labels
    c = 0
    tr = iter(train_n)  #create train_n iterator
    tt = iter(test_n)  #create test_n iterator
    for i in range(0, len(test_n)):
        if c < len(train_n):
            i, j = next(tr)
            train_inputs.append(i)
            train_labels.append(j)
            c += 1
        i, j = next(tt)
        test_inputs.append(i)
        test_labels.append(j)

    #convert the list to tensor
    train_inputs = tf.convert_to_tensor(train_inputs, dtype=tf.float32)
    train_labels = tf.convert_to_tensor(train_labels, dtype=tf.float32)
    test_inputs = tf.convert_to_tensor(test_inputs, dtype=tf.float32)
    test_labels = tf.convert_to_tensor(test_labels, dtype=tf.float32)

    #free memory
    del train_n, test_n, tr, tt, train, test
    return train_inputs, train_labels, test_inputs, test_labels
コード例 #5
0
        #hp.Float("t_x", 0, 0.5, step=0.1, default=0.2), 
        #hp.Float("t_y", 0, 0.5, step=0.1, default=0.2), 
        translate,
        translate,
        fill_mode="reflect",interpolation="bilinear",)(a)
    a = RandomFlip()(a)
    a = RandomZoom(hp.Float("zoom", 0, 0.5, step=0.1, default=0.25))(a)
    a = RandomRotation(hp.Float("rotation", 0, 2, step=0.1, default=2))(a)
    #a = RandomHeight(0.2)(a)
    #a = RandomWidth(0.2)(a)
    
    return a

data_augmentation = Sequential([
                                RandomFlip("horizontal_and_vertical"),
                                RandomRotation((0,0.5), fill_mode='constant')
])
def comparisons_model(hp):
    img_size=224
    weights=None
    """
    Create comparisons network which reproduce the choice in an images duel.

    :param img_size: size of input images during training
    :type img_size: tuple(int)
    :param weights: path to the weights use for initialization
    :type weights: str
    :return: ranking comparisons model
    :rtype: keras.Model
    """
    
コード例 #6
0
# X_train,x_test,Y_train,Y_test = train_test_split(X_train,Y_train,test_size=0.2, random_state = 42)

# One hot coding 
from sklearn import preprocessing
lb = preprocessing.LabelBinarizer()
Y_train = lb.fit_transform(Y_train)
class_num = Y_train.shape[1]
# print(Y_train)

# Creating the model
model = Sequential()

# Adding data augmentation
model.add(RandomContrast([0.5,1.5]))
model.add(RandomFlip('horizontal_and_vertical'))
model.add(RandomRotation([0.5,1.5]))
model.add(Resizing(128,128,interpolation='bicubic'))
model.add(RandomZoom([0.2,0.5]))
model.add(RandomTranslation(height_factor=(-0.2,0.2), width_factor=(-0.2,0.2)))

#first convolutional layer
model.add(Conv2D(32, (5,5), input_shape=(48,48,1), activation='relu', padding='same'))
# model.add(Conv2D(32, (5,5), input_shape=(48,48,1), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

#second convolutional layer
model.add(Conv2D(64,(5,5), activation='relu', padding='same'))
model.add(Conv2D(64,(5,5), activation='relu', padding='same'))
# model.add(Conv2D(64,(5,5), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2,2)))