def test_explicit_device_with_go_backward_and_mask(self): batch_size = 8 timestep = 7 masksteps = 5 units = 4 inputs = np.random.randn(batch_size, timestep, units).astype(np.float32) mask = np.ones((batch_size, timestep)).astype(np.bool) mask[:, masksteps:] = 0 # Test for V1 behavior. lstm_v1 = gru_v1.GRU(units, return_sequences=True, go_backwards=True) with test_utils.device(should_use_gpu=True): outputs_masked_v1 = lstm_v1(inputs, mask=tf.constant(mask)) outputs_trimmed_v1 = lstm_v1(inputs[:, :masksteps]) self.assertAllClose(outputs_masked_v1[:, -masksteps:], outputs_trimmed_v1) # Test for V2 behavior. lstm = gru.GRU(units, return_sequences=True, go_backwards=True) with test_utils.device(should_use_gpu=True): outputs_masked = lstm(inputs, mask=tf.constant(mask)) outputs_trimmed = lstm(inputs[:, :masksteps]) self.assertAllClose(outputs_masked[:, -masksteps:], outputs_trimmed)
def test_gru_feature_parity_v1_v2(self): input_shape = 10 rnn_state_size = 8 timestep = 4 batch = 20 (x_train, y_train), _ = test_utils.get_test_data( train_samples=batch, test_samples=0, input_shape=(timestep, input_shape), num_classes=rnn_state_size, random_seed=87654321, ) y_train = np_utils.to_categorical(y_train, rnn_state_size) # For the last batch item of the test data, we filter out the last # timestep to simulate the variable length sequence and masking test. x_train[-2:, -1, :] = 0.0 y_train[-2:] = 0 inputs = keras.layers.Input(shape=[timestep, input_shape], dtype=tf.float32) masked_input = keras.layers.Masking()(inputs) gru_layer = gru_v1.GRU(rnn_state_size, recurrent_activation="sigmoid", reset_after=True) output = gru_layer(masked_input) gru_model = keras.models.Model(inputs, output) weights = gru_model.get_weights() y_1 = gru_model.predict(x_train) gru_model.compile("rmsprop", "mse") gru_model.fit(x_train, y_train) y_2 = gru_model.predict(x_train) with test_utils.device(should_use_gpu=True): cudnn_layer = gru.GRU(rnn_state_size, recurrent_activation="sigmoid", reset_after=True) cudnn_model = keras.models.Model(inputs, cudnn_layer(masked_input)) cudnn_model.set_weights(weights) y_3 = cudnn_model.predict(x_train) cudnn_model.compile("rmsprop", "mse") cudnn_model.fit(x_train, y_train) y_4 = cudnn_model.predict(x_train) self.assertAllClose(y_1, y_3, rtol=2e-5, atol=2e-5) self.assertAllClose(y_2, y_4, rtol=2e-5, atol=2e-5)
def test_gru_v2_output_on_multiple_kernel(self): input_shape = 10 rnn_state_size = 8 timestep = 4 batch = 100 x_train = np.random.random((batch, timestep, input_shape)) inputs = keras.layers.Input(shape=[timestep, input_shape], dtype=tf.float32) with test_utils.device(should_use_gpu=False): layer = gru.GRU(rnn_state_size) output = layer(inputs) cpu_model = keras.models.Model(inputs, output) weights = cpu_model.get_weights() y_1 = cpu_model.predict(x_train) with test_utils.device(should_use_gpu=True): layer = gru.GRU(rnn_state_size) output = layer(inputs) gpu_model = keras.models.Model(inputs, output) gpu_model.set_weights(weights) y_2 = gpu_model.predict(x_train) # Note that cuDNN uses 'sigmoid' as activation, so the GRU V2 uses # 'sigmoid' as default. Construct the canonical GRU with sigmoid to achieve # the same output. with test_utils.device(should_use_gpu=True): layer = gru_v1.GRU(rnn_state_size, recurrent_activation='sigmoid', reset_after=True) output = layer(inputs) canonical_model = keras.models.Model(inputs, output) canonical_model.set_weights(weights) y_3 = canonical_model.predict(x_train) self.assertAllClose(y_1, y_2, rtol=1e-5, atol=1e-5) self.assertAllClose(y_2, y_3, rtol=1e-5, atol=1e-5)
class LayerCorrectnessTest(test_combinations.TestCase): def setUp(self): super(LayerCorrectnessTest, self).setUp() # Set two virtual CPUs to test MirroredStrategy with multiple devices cpus = tf.config.list_physical_devices('CPU') tf.config.set_logical_device_configuration(cpus[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ]) def _create_model_from_layer(self, layer, input_shapes): inputs = [layers.Input(batch_input_shape=s) for s in input_shapes] if len(inputs) == 1: inputs = inputs[0] y = layer(inputs) model = models.Model(inputs, y) model.compile('sgd', 'mse') return model @parameterized.named_parameters( ('LeakyReLU', activation.LeakyReLU, (2, 2)), ('PReLU', activation.PReLU, (2, 2)), ('ELU', activation.ELU, (2, 2)), ('ThresholdedReLU', activation.ThresholdedReLU, (2, 2)), ('Softmax', activation.Softmax, (2, 2)), ('ReLU', activation.ReLU, (2, 2)), ('Conv1D', lambda: convolutional.Conv1D(2, 2), (2, 2, 1)), ('Conv2D', lambda: convolutional.Conv2D(2, 2), (2, 2, 2, 1)), ('Conv3D', lambda: convolutional.Conv3D(2, 2), (2, 2, 2, 2, 1)), ('Conv2DTranspose', lambda: convolutional.Conv2DTranspose(2, 2), (2, 2, 2, 2)), ('SeparableConv2D', lambda: convolutional.SeparableConv2D(2, 2), (2, 2, 2, 1)), ('DepthwiseConv2D', lambda: convolutional.DepthwiseConv2D(2, 2), (2, 2, 2, 1)), ('UpSampling2D', reshaping.UpSampling2D, (2, 2, 2, 1)), ('ZeroPadding2D', reshaping.ZeroPadding2D, (2, 2, 2, 1)), ('Cropping2D', reshaping.Cropping2D, (2, 3, 3, 1)), ('ConvLSTM2D', lambda: conv_lstm2d.ConvLSTM2D(4, kernel_size=(2, 2)), (4, 4, 4, 4, 4)), ('Dense', lambda: core.Dense(2), (2, 2)), ('Dropout', lambda: regularization.Dropout(0.5), (2, 2)), ('SpatialDropout2D', lambda: regularization.SpatialDropout2D(0.5), (2, 2, 2, 2)), ('Activation', lambda: core.Activation('sigmoid'), (2, 2)), ('Reshape', lambda: reshaping.Reshape( (1, 4, 1)), (2, 2, 2)), ('Permute', lambda: reshaping.Permute( (2, 1)), (2, 2, 2)), ('Attention', attention.Attention, [ (2, 2, 3), (2, 3, 3), (2, 3, 3) ]), ('AdditiveAttention', attention.AdditiveAttention, [ (2, 2, 3), (2, 3, 3), (2, 3, 3) ]), ('Embedding', lambda: core.Embedding(4, 4), (2, 4), 2e-3, 2e-3, np.random.randint(4, size=(2, 4))), ('LocallyConnected1D', lambda: locally_connected.LocallyConnected1D(2, 2), (2, 2, 1)), ('LocallyConnected2D', lambda: locally_connected.LocallyConnected2D(2, 2), (2, 2, 2, 1)), ('Add', merging.Add, [(2, 2), (2, 2)]), ('Subtract', merging.Subtract, [(2, 2), (2, 2)]), ('Multiply', merging.Multiply, [ (2, 2), (2, 2) ]), ('Average', merging.Average, [(2, 2), (2, 2)]), ('Maximum', merging.Maximum, [ (2, 2), (2, 2) ]), ('Minimum', merging.Minimum, [ (2, 2), (2, 2) ]), ('Concatenate', merging.Concatenate, [ (2, 2), (2, 2) ]), ('Dot', lambda: merging.Dot(1), [(2, 2), (2, 2)]), ('GaussianNoise', lambda: regularization.GaussianNoise(0.5), (2, 2)), ('GaussianDropout', lambda: regularization.GaussianDropout(0.5), (2, 2)), ('AlphaDropout', lambda: regularization.AlphaDropout(0.5), (2, 2)), ('BatchNormalization', batch_normalization.BatchNormalization, (2, 2), 1e-2, 1e-2), ('LayerNormalization', layer_normalization.LayerNormalization, (2, 2)), ('LayerNormalizationUnfused', lambda: layer_normalization.LayerNormalization(axis=1), (2, 2, 2)), ('MaxPooling2D', pooling.MaxPooling2D, (2, 2, 2, 1)), ('AveragePooling2D', pooling.AveragePooling2D, (2, 2, 2, 1)), ('GlobalMaxPooling2D', pooling.GlobalMaxPooling2D, (2, 2, 2, 1)), ('GlobalAveragePooling2D', pooling.GlobalAveragePooling2D, (2, 2, 2, 1)), ('SimpleRNN', lambda: simple_rnn.SimpleRNN(units=4), (4, 4, 4), 1e-2, 1e-2), ('SimpleRNN_stateful', lambda: simple_rnn.SimpleRNN(units=4, stateful=True), (4, 4, 4), 1e-2, 1e-2), ('GRU', lambda: gru_v1.GRU(units=4), (4, 4, 4)), ('LSTM', lambda: lstm_v1.LSTM(units=4), (4, 4, 4)), ('GRUV2', lambda: gru.GRU(units=4), (4, 4, 4)), ('GRUV2_stateful', lambda: gru.GRU(units=4, stateful=True), (4, 4, 4)), ('LSTMV2', lambda: lstm.LSTM(units=4), (4, 4, 4)), ('LSTMV2_stateful', lambda: lstm.LSTM(units=4, stateful=True), (4, 4, 4)), ('TimeDistributed', lambda: time_distributed.TimeDistributed(core.Dense(2)), (2, 2, 2)), ('Bidirectional', lambda: bidirectional.Bidirectional(simple_rnn.SimpleRNN(units=4)), (2, 2, 2)), ('AttentionLayerCausal', lambda: attention.Attention(causal=True), [ (2, 2, 3), (2, 3, 3), (2, 3, 3) ]), ('AdditiveAttentionLayerCausal', lambda: attention.AdditiveAttention(causal=True), [ (2, 3, 4), (2, 3, 4), (2, 3, 4) ]), ('NormalizationAdapt', _create_normalization_layer_with_adapt, (4, 4)), ('NormalizationNoAdapt', _create_normalization_layer_without_adapt, (4, 4)), ('Resizing', lambda: image_preprocessing.Resizing(3, 3), (2, 5, 5, 1)), ('Rescaling', lambda: image_preprocessing.Rescaling(2., 1.), (6, 6)), ('CenterCrop', lambda: image_preprocessing.CenterCrop(3, 3), (2, 5, 5, 1))) def test_layer(self, f32_layer_fn, input_shape, rtol=2e-3, atol=2e-3, input_data=None): """Tests a layer by comparing the float32 and mixed precision weights. A float32 layer, a mixed precision layer, and a distributed mixed precision layer are run. The three layers are identical other than their dtypes and distribution strategies. The outputs after predict() and weights after fit() are asserted to be close. Args: f32_layer_fn: A function returning a float32 layer. The other two layers will automatically be created from this input_shape: The shape of the input to the layer, including the batch dimension. Or a list of shapes if the layer takes multiple inputs. rtol: The relative tolerance to be asserted. atol: The absolute tolerance to be asserted. input_data: A Numpy array with the data of the input. If None, input data will be randomly generated """ if f32_layer_fn == reshaping.ZeroPadding2D and tf.test.is_built_with_rocm( ): return if isinstance(input_shape[0], int): input_shapes = [input_shape] else: input_shapes = input_shape strategy = create_mirrored_strategy() f32_layer = f32_layer_fn() # Create the layers assert f32_layer.dtype == f32_layer._compute_dtype == 'float32' config = f32_layer.get_config() config['dtype'] = policy.Policy('mixed_float16') mp_layer = f32_layer.__class__.from_config(config) distributed_mp_layer = f32_layer.__class__.from_config(config) # Compute per_replica_input_shapes for the distributed model global_batch_size = input_shapes[0][0] assert global_batch_size % strategy.num_replicas_in_sync == 0, ( 'The number of replicas, %d, does not divide the global batch size of ' '%d' % (strategy.num_replicas_in_sync, global_batch_size)) per_replica_batch_size = (global_batch_size // strategy.num_replicas_in_sync) per_replica_input_shapes = [(per_replica_batch_size, ) + s[1:] for s in input_shapes] # Create the models f32_model = self._create_model_from_layer(f32_layer, input_shapes) mp_model = self._create_model_from_layer(mp_layer, input_shapes) with strategy.scope(): distributed_mp_model = self._create_model_from_layer( distributed_mp_layer, per_replica_input_shapes) # Set all model weights to the same values f32_weights = f32_model.get_weights() mp_model.set_weights(f32_weights) distributed_mp_model.set_weights(f32_weights) # Generate input data if input_data is None: # Cast inputs to float16 to avoid measuring error from having f16 layers # cast to float16. input_data = [ np.random.normal(size=s).astype('float16') for s in input_shapes ] if len(input_data) == 1: input_data = input_data[0] # Assert all models have close outputs. f32_output = f32_model.predict(input_data) mp_output = mp_model.predict(input_data) self.assertAllClose(mp_output, f32_output, rtol=rtol, atol=atol) self.assertAllClose(distributed_mp_model.predict(input_data), f32_output, rtol=rtol, atol=atol) # Run fit() on models output = np.random.normal( size=f32_model.outputs[0].shape).astype('float16') for model in f32_model, mp_model, distributed_mp_model: model.fit(input_data, output, batch_size=global_batch_size) # Assert all models have close weights f32_weights = f32_model.get_weights() self.assertAllClose(mp_model.get_weights(), f32_weights, rtol=rtol, atol=atol) self.assertAllClose(distributed_mp_model.get_weights(), f32_weights, rtol=rtol, atol=atol)