コード例 #1
0
                                                     tag2idx, n_words, n_tags)
X_val, y_val, n_words_val, n_tags_val = data_process(df_data_val, word2idx,
                                                     tag2idx, n_words, n_tags)

BATCH_SIZE = 32
EPOCHS = 20
EMBEDDING = 50

model = Sequential()
model.add(
    Embedding(input_dim=n_words + 2,
              output_dim=EMBEDDING,
              input_length=MAX_LEN,
              mask_zero=True,
              input_shape=(MAX_LEN, )))
model.add(Bidirectional(LSTM(units=100, return_sequences=True)))
model.add(TimeDistributed(Dense(50, activation="relu")))
crf = CRF(n_tags + 1)  # CRF layer, n_tags+1(PAD)
model.add(CRF(n_tags + 1))
rmsprop = optimizers.RMSprop(lr=0.001)
model.compile(optimizer=rmsprop,
              loss=crf.loss_function,
              metrics=[crf.accuracy])
model.summary()
print('Train...')
labels = [
    'B-ADR', 'I-ADR', 'B-Drug', 'B-Disease', 'B-Symptom', 'I-Symptom',
    'I-Disease', 'I-Drug', 'B-Finding', 'I-Finding'
]

history = model.fit(X_tr,
コード例 #2
0
ファイル: elsa_sentence.py プロジェクト: sIncerass/ELSA
def elsa_architecture(nb_classes, nb_tokens, maxlen, feature_output=False, embed_dropout_rate=0, final_dropout_rate=0, embed_dim=300,
                    embed_l2=1E-6, return_attention=False, load_embedding=False, pre_embedding=None, high=False, LSTM_hidden=512, LSTM_drop=0.5):
    """
    Returns the DeepMoji architecture uninitialized and
    without using the pretrained model weights.
    # Arguments:
        nb_classes: Number of classes in the dataset.
        nb_tokens: Number of tokens in the dataset (i.e. vocabulary size).
        maxlen: Maximum length of a token.
        feature_output: If True the model returns the penultimate
                        feature vector rather than Softmax probabilities
                        (defaults to False).
        embed_dropout_rate: Dropout rate for the embedding layer.
        final_dropout_rate: Dropout rate for the final Softmax layer.
        embed_l2: L2 regularization for the embedding layerl.
        high: use or not the highway network
    # Returns:
        Model with the given parameters.
    """
    class NonMasking(Layer):   
        def __init__(self, **kwargs):   
            self.supports_masking = True  
            super(NonMasking, self).__init__(**kwargs)   

        def build(self, input_shape):   
            input_shape = input_shape   

        def compute_mask(self, input, input_mask=None):   
            # do not pass the mask to the next layers   
            return None   

        def call(self, x, mask=None):   
            return x   

        def get_output_shape_for(self, input_shape):   
            return input_shape 
    # define embedding layer that turns word tokens into vectors
    # an activation function is used to bound the values of the embedding
    model_input = Input(shape=(maxlen,), dtype='int32')
    embed_reg = L1L2(l2=embed_l2) if embed_l2 != 0 else None
    if not load_embedding and pre_embedding is None:
        embed = Embedding(input_dim=nb_tokens, output_dim=embed_dim, mask_zero=True,input_length=maxlen,embeddings_regularizer=embed_reg,
                          name='embedding')
    else:
        embed = Embedding(input_dim=nb_tokens, output_dim=embed_dim, mask_zero=True,input_length=maxlen, weights=[pre_embedding],
                          embeddings_regularizer=embed_reg,trainable=True, name='embedding')
    if high:
        x = NonMasking()(embed(model_input))
    else:
        x = embed(model_input)
    x = Activation('tanh')(x)

    # entire embedding channels are dropped out instead of the
    # normal Keras embedding dropout, which drops all channels for entire words
    # many of the datasets contain so few words that losing one or more words can alter the emotions completely
    if embed_dropout_rate != 0:
        embed_drop = SpatialDropout1D(embed_dropout_rate, name='embed_drop')
        x = embed_drop(x)

    # skip-connection from embedding to output eases gradient-flow and allows access to lower-level features
    # ordering of the way the merge is done is important for consistency with the pretrained model
    lstm_0_output = Bidirectional(LSTM(LSTM_hidden, return_sequences=True, dropout=LSTM_drop), name="bi_lstm_0" )(x)
    lstm_1_output = Bidirectional(LSTM(LSTM_hidden, return_sequences=True, dropout=LSTM_drop), name="bi_lstm_1" )(lstm_0_output)
    x = concatenate([lstm_1_output, lstm_0_output, x])
    if high:
        x = TimeDistributed(Highway(activation='tanh', name="high"))(x)
    # if return_attention is True in AttentionWeightedAverage, an additional tensor
    # representing the weight at each timestep is returned
    weights = None
    x = AttentionWeightedAverage(name='attlayer', return_attention=return_attention)(x)
    #x = MaskAverage(name='attlayer', return_attention=return_attention)(x)
    if return_attention:
        x, weights = x

    if not feature_output:
        # output class probabilities
        if final_dropout_rate != 0:
            x = Dropout(final_dropout_rate)(x)

        if nb_classes > 2:
            outputs = [Dense(nb_classes, activation='softmax', name='softmax')(x)]
        else:
            outputs = [Dense(1, activation='sigmoid', name='softmax')(x)]
    else:
        # output penultimate feature vector
        outputs = [x]

    if return_attention:
        # add the attention weights to the outputs if required
        outputs.append(weights)

    return Model(inputs=[model_input], outputs=outputs)
コード例 #3
0
ファイル: NLP_Model.py プロジェクト: pipidog/CNLP
    def build_rnn(self,
                  embedding_size=128,
                  is_bidirectional=False,
                  depth=3,
                  cell='GRU',
                  cell_size=128,
                  dense_size=20,
                  dr=0.4):
        '''
        << summary >>
        build keras model
        << inputs >>
        embedding_size: dimension of the embedding layer
        is_bidirectional: whether the model is bidirectional
        depth: depth of the RNN neural network
        cell: cell of the RNN neuron, 'SimpleRNN'/'GRU'/'LSTM'
        cell_size: number of neurons of each cell
        dense_size: size of the final fully-connected layer
        dr: dropout rate for RNN and the final fully-connected layer
        << outputs >>
        [file]:
            self.wkdir+'/output/model.h5': the model file
        [var]:
            model: the keras model object
        '''
        print('\n\n>>>>>>>>>> build RNN model <<<<<<<<<<')
        # load token_dict_size and padding_size
        token_dict_size, padding_size = \
            pickle.load(open(self.wkdir+'/output/model_preprocessing_tmp.pkl','rb'))

        # define layer wrapper
        layer_wrap = []
        for n in range(depth):
            if n == depth - 1:
                return_sequences = False
            else:
                return_sequences = True

            if cell == 'Simple':
                layer_tmp = SimpleRNN(cell_size,
                                      dropout=dr,
                                      recurrent_dropout=dr,
                                      return_sequences=return_sequences)
            elif cell == 'LSTM':
                layer_tmp = LSTM(cell_size,
                                 dropout=dr,
                                 recurrent_dropout=dr,
                                 return_sequences=return_sequences)
            elif cell == 'GRU':
                layer_tmp = GRU(cell_size,
                                dropout=dr,
                                recurrent_dropout=dr,
                                return_sequences=return_sequences)
            if is_bidirectional:
                layer_tmp = Bidirectional(layer_tmp)
            layer_wrap.append(layer_tmp)

        # construct model
        model = Sequential()
        model.add(
            Embedding(token_dict_size + 1,
                      embedding_size,
                      input_length=padding_size))
        [model.add(layer_wrap[n]) for n in range(depth)]
        model.add(Dense(dense_size, activation='relu'))

        if self.tot_class == 2:
            model.add(Dense(1, activation='sigmoid'))
        else:
            model.add(Dense(self.tot_class, activation='softmax'))
        print(model.summary())
        try:
            import pydot
        except:
            print(
                '\n ==> plot_model is not available, model will not output in png format\n'
            )
        else:
            print('\n ==> model has been output to ' + self.wkdir +
                  'output/model.png\n')
            plot_model(model,
                       self.wkdir + 'output/model.png',
                       show_shapes=True)

        model.save(self.wkdir + '/output/model.h5')

        return model
コード例 #4
0
    vector_i = word2vec_model.wv[word]
    if vector_i is not None:
        embedding_l_weights[idx] = vector_i

# In[55]:

# BiLSTM RNN

model = Sequential()

model.add(
    Embedding(input_dim=len(tokenizer.word_index) + 1,
              output_dim=embedding_vector_size,
              input_length=avg_doc_len,
              weights=[embedding_l_weights]))
model.add(Bidirectional(LSTM(128, dropout=0.25, recurrent_dropout=0.1)))
model.add(Dense(10))
model.add(Dropout(0.3))
model.add(Dense(1, activation='sigmoid'))

# In[56]:

# Keras: Reduce learning rate when a metric has stopped improving.

learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
                                            patience=2,
                                            factor=0.5,
                                            min_lr=0.0001,
                                            verbose=1)

# In[57]:
コード例 #5
0
embed_dim = 128
lstm_out = 196

from keras.layers import Bidirectional,GRU

model = Sequential()

model.add(Embedding(max_fatures, embed_dim,input_length = X.shape[1]))
#model.add(LSTM(128,dropout=0.4, recurrent_dropout=0.4,return_sequences=True))
#model.add(LSTM(128,dropout=0.5, recurrent_dropout=0.5,return_sequences=True))
model.add(LSTM(128,dropout=0.4, recurrent_dropout=0.4,return_sequences=True))
model.add(LSTM(128,dropout=0.5, recurrent_dropout=0.5,return_sequences=True))
model.add(LSTM(64,dropout=0.5, recurrent_dropout=0.5,return_sequences=True))
model.add(LSTM(64,dropout=0.5, recurrent_dropout=0.5,return_sequences=True))
model.add(Bidirectional(GRU(lstm_out, recurrent_dropout=0.2, dropout=0.2, return_sequences=True)))
model.add(Bidirectional(LSTM(lstm_out, recurrent_dropout=0.2, dropout=0.2, return_sequences=True)))
model.add(Bidirectional(GRU(lstm_out, recurrent_dropout=0.2, dropout=0.2, return_sequences=True)))
model.add(Bidirectional(LSTM(lstm_out, recurrent_dropout=0.2, dropout=0.2, return_sequences=False)))

model.add(Dense(2,activation='sigmoid',kernel_initializer='TruncatedNormal'))
model.compile(loss = 'categorical_crossentropy', optimizer='Adam',metrics = ['accuracy'])
print(model.summary())


# In[ ]:


Y = pd.get_dummies(df['Label']).values
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.20, random_state = 42)
print(X_train.shape,Y_train.shape)
コード例 #6
0
    return (x + y) / 2


def data_normal(x):
    min_max_scaler = preprocessing.MinMaxScaler()
    x = min_max_scaler.fit_transform(x)
    return x


# Audio branch
frame_input = Input(shape=(513, 64))
mask_frame_input = Masking(mask_value=0.)(frame_input)
print('mask_frame_input shape: ', mask_frame_input.shape)
frame_l1 = Bidirectional(
    LSTM(100,
         return_sequences=True,
         recurrent_dropout=0.25,
         name='LSTM_audio_1'))(mask_frame_input)
frame_l1 = BatchNormalization()(frame_l1)
print('frame_l1 shape: ', frame_l1.shape)
frame_weight = AttentionLayer()(frame_l1)
frame_weight = BatchNormalization()(frame_weight)
print('frame_att shape: ', frame_weight.shape)
frame_weight_exp = Lambda(weight_expand)(frame_weight)
frame_att = Lambda(weight_dot)([frame_l1, frame_weight_exp])
frame_att = Lambda(lambda x: backend.sum(x, axis=1))(frame_att)
print('frame_att shape: ', frame_att.shape)
dropout_frame = Dropout(0.5)(frame_att)
model_frame = Model(frame_input, dropout_frame)

word_input = Input(shape=(98, 513, 64))
コード例 #7
0
testY = test[(2) * Step - 1:len(test), 2]

trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
print(trainX[1])
print(trainY[1])

testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

#to design and fit our LSTM network for this problem.

# visible layer with 1 input, a hidden layer with 4 LSTM blocks or neurons, and an output layer that makes a single value prediction. The default sigmoid activation function is used for the LSTM blocks. The network is trained for 100 epochs and a batch size of 1 is used.

#stacked Model
model = Sequential()
model.add(
    Bidirectional(LSTM(28, activation='relu'), input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=500, batch_size=1, verbose=2)
#the number of epochs have been choosen 10 to decrease the computaional complexity.
# make predictions
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

trainScore = math.sqrt(mean_squared_error(trainY, trainPredict))
trainScore_mse = mean_squared_error(trainY, trainPredict)
print('Train Score: %.2f RMSE' % (trainScore))
print('Train Score: %.2f MSE' % (trainScore_mse))

testScore = math.sqrt(mean_squared_error(testY, testPredict))
testScore_mse = mean_squared_error(testY, testPredict)
コード例 #8
0
def test_load_layers():
    from keras.layers import ConvLSTM2D, TimeDistributed, Bidirectional, Conv2D, Input
    from keras.models import Model

    if K.backend() == 'tensorflow' or K.backend() == 'cntk':
        inputs = Input(shape=(10, 20, 20, 1))
    else:
        inputs = Input(shape=(10, 1, 20, 20))
    td_conv = TimeDistributed(Conv2D(15, (5, 5)))(inputs)
    bi_convlstm2d = Bidirectional(ConvLSTM2D(10, (3, 3)),
                                  merge_mode='concat')(td_conv)
    model = Model(inputs=inputs, outputs=bi_convlstm2d)

    weight_value_tuples = []

    # TimeDistributed Conv2D layer
    # use 'channels_first' data format to check that the function is being called correctly for Conv2D
    # old: (filters, stack_size, kernel_rows, kernel_cols)
    # new: (kernel_rows, kernel_cols, stack_size, filters)
    weight_tensor_td_conv_old = list()
    weight_tensor_td_conv_old.append(np.zeros((15, 1, 5, 5)))
    weight_tensor_td_conv_old.append(np.zeros((15, )))
    td_conv_layer = model.layers[1]
    td_conv_layer.layer.data_format = 'channels_first'
    weight_tensor_td_conv_new = topology.preprocess_weights_for_loading(
        td_conv_layer, weight_tensor_td_conv_old, original_keras_version='1')
    symbolic_weights = td_conv_layer.weights
    assert (len(symbolic_weights) == len(weight_tensor_td_conv_new))
    weight_value_tuples += zip(symbolic_weights, weight_tensor_td_conv_new)

    # Bidirectional ConvLSTM2D layer
    # old ConvLSTM2D took a list of 12 weight tensors, returns a list of 3 concatenated larger tensors.
    weight_tensor_bi_convlstm_old = []
    for j in range(2):  # bidirectional
        for i in range(4):
            weight_tensor_bi_convlstm_old.append(np.zeros(
                (3, 3, 15, 10)))  # kernel
            weight_tensor_bi_convlstm_old.append(np.zeros(
                (3, 3, 10, 10)))  # recurrent kernel
            weight_tensor_bi_convlstm_old.append(np.zeros((10, )))  # bias

    bi_convlstm_layer = model.layers[2]
    weight_tensor_bi_convlstm_new = topology.preprocess_weights_for_loading(
        bi_convlstm_layer,
        weight_tensor_bi_convlstm_old,
        original_keras_version='1')

    symbolic_weights = bi_convlstm_layer.weights
    assert (len(symbolic_weights) == len(weight_tensor_bi_convlstm_new))
    weight_value_tuples += zip(symbolic_weights, weight_tensor_bi_convlstm_new)

    K.batch_set_value(weight_value_tuples)

    assert np.all(
        K.eval(model.layers[1].weights[0]) == weight_tensor_td_conv_new[0])
    assert np.all(
        K.eval(model.layers[1].weights[1]) == weight_tensor_td_conv_new[1])
    assert np.all(
        K.eval(model.layers[2].weights[0]) == weight_tensor_bi_convlstm_new[0])
    assert np.all(
        K.eval(model.layers[2].weights[1]) == weight_tensor_bi_convlstm_new[1])
    assert np.all(
        K.eval(model.layers[2].weights[2]) == weight_tensor_bi_convlstm_new[2])
    assert np.all(
        K.eval(model.layers[2].weights[3]) == weight_tensor_bi_convlstm_new[3])
    assert np.all(
        K.eval(model.layers[2].weights[4]) == weight_tensor_bi_convlstm_new[4])
    assert np.all(
        K.eval(model.layers[2].weights[5]) == weight_tensor_bi_convlstm_new[5])
コード例 #9
0
    def train_model(self,
                    sentences_pair,
                    is_similar,
                    embedding_meta_data,
                    model_save_directory='./'):
        """
        Train Siamese network to find similarity between sentences in `sentences_pair`
            Steps Involved:
                1. Pass the each from sentences_pairs  to bidirectional LSTM encoder.
                2. Merge the vectors from LSTM encodes and passed to dense layer.
                3. Pass the  dense layer vectors to sigmoid output layer.
                4. Use cross entropy loss to train weights
        Args:
            sentences_pair (list): list of tuple of sentence pairs
            is_similar (list): target value 1 if same sentences pair are similar otherwise 0
            embedding_meta_data (dict): dict containing tokenizer and word embedding matrix
            model_save_directory (str): working directory for where to save models

        Returns:
            return (best_model_path):  path of best model
        """
        tokenizer, embedding_matrix = embedding_meta_data[
            'tokenizer'], embedding_meta_data['embedding_matrix']

        train_data_x1, train_data_x2, train_labels, leaks_train, \
        val_data_x1, val_data_x2, val_labels, leaks_val = create_train_dev_set(tokenizer, sentences_pair,
                                                                               is_similar, self.max_sequence_length,
                                                                               self.validation_split_ratio)

        if train_data_x1 is None:
            print("++++ !! Failure: Unable to train model ++++")
            return None

        nb_words = len(tokenizer.word_index) + 1

        # Creating word embedding layer
        embedding_layer = Embedding(nb_words,
                                    self.embedding_dim,
                                    weights=[embedding_matrix],
                                    input_length=self.max_sequence_length,
                                    trainable=False)

        # Creating LSTM Encoder
        lstm_layer = Bidirectional(
            LSTM(self.number_lstm_units,
                 dropout=self.rate_drop_lstm,
                 recurrent_dropout=self.rate_drop_lstm))

        # Creating LSTM Encoder layer for First Sentence
        sequence_1_input = Input(shape=(self.max_sequence_length, ),
                                 dtype='int32')
        embedded_sequences_1 = embedding_layer(sequence_1_input)
        x1 = lstm_layer(embedded_sequences_1)

        # Creating LSTM Encoder layer for Second Sentence
        sequence_2_input = Input(shape=(self.max_sequence_length, ),
                                 dtype='int32')
        embedded_sequences_2 = embedding_layer(sequence_2_input)
        x2 = lstm_layer(embedded_sequences_2)

        # Creating leaks input
        leaks_input = Input(shape=(leaks_train.shape[1], ))
        leaks_dense = Dense(self.number_dense_units / 2,
                            activation=self.activation_function)(leaks_input)

        # Merging two LSTM encodes vectors from sentences to
        # pass it to dense layer applying dropout and batch normalisation
        merged = concatenate([x1, x2, leaks_dense])
        merged = BatchNormalization()(merged)
        merged = Dropout(self.rate_drop_dense)(merged)
        merged = Dense(self.number_dense_units,
                       activation=self.activation_function)(merged)
        merged = BatchNormalization()(merged)
        merged = Dropout(self.rate_drop_dense)(merged)
        preds = Dense(1, activation='sigmoid')(merged)

        model = Model(inputs=[sequence_1_input, sequence_2_input, leaks_input],
                      outputs=preds)
        model.compile(loss='binary_crossentropy',
                      optimizer='nadam',
                      metrics=['acc'])

        early_stopping = EarlyStopping(monitor='val_loss', patience=3)

        STAMP = 'lstm_%d_%d_%.2f_%.2f' % (
            self.number_lstm_units, self.number_dense_units,
            self.rate_drop_lstm, self.rate_drop_dense)

        checkpoint_dir = model_save_directory + 'checkpoints/' + str(
            int(time.time())) + '/'

        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)

        bst_model_path = checkpoint_dir + STAMP + '.h5'

        model_checkpoint = ModelCheckpoint(bst_model_path,
                                           save_best_only=True,
                                           save_weights_only=False)

        tensorboard = TensorBoard(log_dir=checkpoint_dir +
                                  "logs/{}".format(time.time()))

        model.fit([train_data_x1, train_data_x2, leaks_train],
                  train_labels,
                  validation_data=([val_data_x1, val_data_x2,
                                    leaks_val], val_labels),
                  epochs=1,
                  batch_size=64,
                  shuffle=True,
                  callbacks=[model_checkpoint, tensorboard])

        return bst_model_path
コード例 #10
0
ファイル: test3.py プロジェクト: morristech/SongEraClassifier
        ai = K.exp(eij)
        weights = ai / K.sum(ai, axis=1).dimshuffle(0, 'x')

        weighted_input = x * weights.dimshuffle(0, 1, 'x')
        return weighted_input.sum(axis=1)

    def compute_output_shape(self, input_shape):
        return (input_shape[0], input_shape[-1])

    def get_output_shape_for(self, input_shape):
        return (input_shape[0], input_shape[-1])


sentence_input = Input(shape=(MAX_SENT_LENGTH, ), dtype='int32')
embedded_sequences = embedding_layer(sentence_input)
l_lstm = Bidirectional(GRU(100, return_sequences=True))(embedded_sequences)
l_dense = TimeDistributed(Dense(200))(l_lstm)
l_att = AttLayer()(l_dense)
sentEncoder = Model(sentence_input, l_att)

Lyrics_input = Input(shape=(MAX_SENTS, MAX_SENT_LENGTH), dtype='int32')
Lyrics_encoder = TimeDistributed(sentEncoder)(Lyrics_input)
l_lstm_sent = Bidirectional(GRU(100, return_sequences=True))(Lyrics_encoder)  #
l_dense_sent = TimeDistributed(Dense(200))(l_lstm_sent)
l_att_sent = AttLayer()(l_dense_sent)
preds = Dense(3,
              activation='softmax')(l_att_sent)  #change to number of classes
model = Model(Lyrics_input, preds)

print("Predicting")
model.load_weights('nlpOutput2.h5')
コード例 #11
0
), dtype='int32')

embedded_sequences_c = embedding_layer_c(sequence_input_c)

dropout_c = Dropout(rate=drop)(embedded_sequences_c)

rone = Lambda(reshape_one)(dropout_c)

merge_m = 'concat'  # raw_input('Enter merge mode for GRU Karakter: ')
merge_m_c = merge_m
dropout_gru = 0.5  # input('Enter dropout for GRU: ')
rec_dropout = dropout_gru
gru_karakter = Bidirectional(GRU(CHAR_EMBEDDING_DIM,
                                 return_sequences=False,
                                 dropout=dropout_gru,
                                 recurrent_dropout=rec_dropout,
                                 trainable=gtrainable),
                             merge_mode=merge_m,
                             weights=None)(rone)

rtwo = Lambda(reshape_two)(gru_karakter)
"""
Combine word + char model
"""

print "Model Choice:"
model_choice = 3  # input('Enter 1 for WE only, 2 for CE only, 3 for both: ')
merge_m = 'concat'  # raw_input('Enter merge mode for GRU Kata: ')
# dropout = input('Enter GRU Karakter dropout: ')
# rec_dropout = input('Enter GRU Karakter recurrent dropout: ')
combine = 0
コード例 #12
0
ファイル: RNN.py プロジェクト: dswang2011/FactCheck
    for word, i in word_index.items():
        if i >= MAX_NB_WORDS:
            continue
        embedding_vector = embeddings_index.get(word)
        if embedding_vector is not None:
            # 文本数据中的词在词向量字典中没有,向量为取0;如果有则取词向量中该词的向量
            embedding_matrix[i] = embedding_vector

    # build models
    rnn_model = Sequential()
    rnn_model.add(
        Embedding(num_words,
                  EMBEDDING_DIM,
                  weights=[embedding_matrix],
                  input_length=MAX_SEQUENCE_LENGTH,
                  trainable=False))
    rnn_model.add(Bidirectional(LSTM(128, implementation=2)))
    rnn_model.add(Dropout(0.5))
    rnn_model.add(Dense(len(labels_index), activation='softmax'))
    rnn_model.compile(optimizer='adam',
                      loss='categorical_crossentropy',
                      metrics=['acc'])  # optimizer=RMSprop

    # 如果希望短一些时间可以,epochs调小
    rnn_model.fit(x_train,
                  y_train,
                  batch_size=128,
                  epochs=20,
                  validation_data=(x_val, y_val))
    res = rnn_model.evaluate(x_val, y_val)
    print(res)
    return metrics.accuracy_score(predictions, ytest), predictions

'''

lx = len(embedding_matrix)

inp = Input(shape=(maxlen, ))
x = Embedding(lx, embed_size, weights=[embedding_matrix])(inp)
x = Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')(x)
x = Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')(x)
x = MaxPooling1D(pool_size=2)(x)
x = Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')(x)
x = Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')(x)
x = MaxPooling1D(pool_size=2)(x)
x = Bidirectional(
    LSTM(300, return_sequences=True, dropout=0.1, recurrent_dropout=0.1))(x)
x = GlobalMaxPool1D()(x)
x = Dense(300, activation="relu")(x)
x = Dense(100, activation="relu")(x)
x = Dropout(0.1)(x)
#ylayer=numpy.asarray(ylayer)
x = Dense(3, activation="sigmoid")(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy', f1_m, precision_m, recall_m])

X_t[X_t == lx] = lx - 1
X_te[X_te == lx] = lx - 1

model.fit(X_t, ytrain, batch_size=32, epochs=2, validation_split=0.1)
コード例 #14
0
def create_base_network(input_shape):
    input = Input(shape=input_shape)
    x = Bidirectional(LSTM(64))(input)
    m = Model(input, x)
    print(m.summary())
    return m
コード例 #15
0
print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)  #returns numpy array
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
y_train = np.array(y_train)  #keras only accepts numpy arrays, not python lists
y_test = np.array(y_test)
x_train = np.array(x_train)
x_test = np.array(x_test)

#instantiate a model by using Input and Output tensors, rather than Sequential()
inputs = Input(shape=(maxlen, ))  #maxlen number of words per training example

#tensors are passed through the layers
x = Embedding(max_features, 128)(inputs)  #embeddings are 128 dim vectors
x = Bidirectional(LSTM(64))(x)  #LSTM layer has 64 units
x = Dropout(0.5)(x)  #what proportion of inputs to set to 0
predictions = Dense(1, activation='sigmoid')(
    x
)  #single sigmoidal output, predicting either 0 or 1, negative or positive sentiment

#create the model that includes the various layers, including the input layer
model = Model(inputs=inputs, outputs=predictions)
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])

#train the model
print('Train...')
hist = model.fit(x_train,
                 y_train,
                 batch_size=batch_size,
                 epochs=1,
コード例 #16
0
ファイル: model.py プロジェクト: jemiaymen/ai4d
    def create_model(self):
        if self.config.model_type == 'LSTM':
            

            # model = Sequential()
            # model.add(Embedding(len(self.word_dict), self.config.max_words ,input_length = self.X.shape[1]))
            # model.add(LSTM(self.config.dim, return_sequences=True , recurrent_dropout=self.config.dropout))
            # model.add(Dropout(self.config.dropout))
            # model.add(LSTM(self.config.dim, return_sequences=True , recurrent_dropout=self.config.dropout ))
            # model.add(Dropout(self.config.dropout))
            # model.add(LSTM(self.config.dim , recurrent_dropout=self.config.dropout))
            # model.add(Dense(self.config.dim,activation='relu'))
            # model.add(Dense(3,activation='softmax'))

            # model = Sequential()
            # model.add(Embedding(len(self.word_dict), self.config.max_words ,input_length = self.X.shape[1]))
            # model.add(LSTM(self.config.dim, dropout=self.config.dropout , recurrent_dropout=self.config.dropout))
            # model.add(Dropout(self.config.dropout))
            # model.add(Dense(3,activation='softmax'))

            inp = Input(shape=(self.config.max_len,))
            x = Embedding(self.config.max_words, self.config.max_len ,input_length = self.X.shape[1])(inp)
            x = Bidirectional(LSTM(self.config.dim, return_sequences=True, dropout=self.config.dropout, recurrent_dropout=self.config.dropout , kernel_regularizer=l2(0.01), recurrent_regularizer=l2(0.01), bias_regularizer=l2(0.01)))(x)
            x = GlobalMaxPool1D()(x)
            x = Dense(self.config.dim, activation="sigmoid")(x)
            x = Dropout(self.config.dropout)(x)
            x = Dense(3, activation='softmax')(x)
            model = Model(inputs=inp, outputs=x)


            self.model = model

        if self.config.model_type == 'GRU':

            model = Sequential()
            model.add(Embedding(len(self.word_dict), self.config.max_words ,input_length = self.X.shape[1]))
            model.add(GRU(self.config.dim, return_sequences=True , recurrent_dropout=self.config.dropout))
            model.add(Dropout(self.config.dropout))
            model.add(GRU(self.config.dim, return_sequences=True , recurrent_dropout=self.config.dropout ))
            model.add(Dropout(self.config.dropout))
            model.add(GRU(self.config.dim , recurrent_dropout=self.config.dropout))
            model.add(Dense(self.config.dim,activation='relu'))
            model.add(Dense(3,activation='softmax'))

            self.model = model

        if self.config.model_type == 'MLP':
            model = Sequential()
            model.add(Dense(len(self.word_dict), input_shape=(self.X.shape[1],) , activation="relu"))
            model.add(Dropout(self.config.dropout))
            model.add(Dense(self.config.dim,activation='relu'))
            model.add(Dropout(self.config.dropout))
            model.add(Dense(self.config.dim,activation="relu"))
            model.add(Dropout(self.config.dropout))
            model.add(Dense(self.config.dim , activation="relu"))
            model.add(Dense(3,activation='softmax'))

            self.model = model

        if self.config.debug:
            print(self.model.summary())
コード例 #17
0
                                                        binary=True)

    embedding_matrix = get_embedding_matrix(word_vec, word_index)
    print(embedding_matrix.shape)

    model = Sequential()

    model.add(
        Embedding(len(vocab) + 1,
                  DW,
                  weights=[embedding_matrix],
                  trainable=False))
    model.add(
        Bidirectional(SimpleRNN(DH,
                                dropout=0.2,
                                recurrent_dropout=0.1,
                                return_sequences=True),
                      merge_mode='concat'))
    model.add(
        Bidirectional(SimpleRNN(int(DH / 2),
                                dropout=0.2,
                                recurrent_dropout=0.1),
                      merge_mode='concat'))

    model.add(Flatten())
    model.add(Dense(4, activation='softmax'))

    model.summary()

    model.compile(
        loss='categorical_crossentropy',
コード例 #18
0
print('y_train shape', y_train.shape)
print('x_val shape', x_val.shape)
print('y_val shape', y_val.shape)
print('x_test shape', x_test.shape)
print('y_test shape', y_test.shape)

##########################################################
# DEFINING THE NEURAL NETWORK
##########################################################

inp = Input(batch_shape=(batch_size,) + x_train.shape[1:])
inp_resh = Reshape((x_train.shape[1] / 4, 4))(inp)
inp_drop = Dropout(0.15)(inp_resh)
bi = Bidirectional(
    LSTM(N_LSTM,
        recurrent_dropout=0.25,
        return_sequences=True,
        kernel_regularizer='l2',
        recurrent_regularizer='l2'), name="BLSTM_layer")(inp_drop)

flat = Flatten()(bi)
out = Dense(1, activation='sigmoid')(flat)



##########################################################
# Model
##########################################################


lstm_model = Model(inp, out)
コード例 #19
0
def rnn(embedding_matrix, config):
    if config['rnn'] == 'gru' and config['gpu']:
        encode = Bidirectional(
            CuDNNGRU(config['rnn_output_size'], return_sequences=True))
        encode2 = Bidirectional(
            CuDNNGRU(config['rnn_output_size'], return_sequences=True))
        encode3 = Bidirectional(
            CuDNNGRU(config['rnn_output_size'], return_sequences=True))
    else:
        encode = Bidirectional(
            CuDNNLSTM(config['rnn_output_size'], return_sequences=True))
        encode2 = Bidirectional(
            CuDNNLSTM(config['rnn_output_size'] * 2, return_sequences=True))
        encode3 = Bidirectional(
            CuDNNGRU(config['rnn_output_size'] * 4, return_sequences=True))

    q1 = Input(shape=(config['max_length'], ), dtype='int32', name='q1_input')
    q2 = Input((config['max_length'], ), dtype='int32', name='q2_input')
    embedding_layer = Embedding(embedding_matrix.shape[0],
                                embedding_matrix.shape[1],
                                trainable=config['embed_trainable'],
                                weights=[embedding_matrix]
                                # mask_zero=True
                                )

    q1_embed = embedding_layer(q1)
    q2_embed = embedding_layer(q2)  # bsz, 1, emb_dims
    q1_embed = BatchNormalization(axis=2)(q1_embed)
    q2_embed = BatchNormalization(axis=2)(q2_embed)
    q1_embed = SpatialDropout1D(config['spatial_dropout_rate'])(q1_embed)
    q2_embed = SpatialDropout1D(config['spatial_dropout_rate'])(q2_embed)

    q1_encoded = encode(q1_embed)
    q2_encoded = encode(q2_embed)
    q1_encoded = Dropout(0.2)(q1_encoded)
    q2_encoded = Dropout(0.2)(q2_encoded)
    # 双向
    #     q1_encoded = encode2(q1_encoded)
    #     q2_encoded = encode2(q2_encoded)
    # resnet
    rnn_layer2_input1 = concatenate([q1_embed, q1_encoded])
    rnn_layer2_input2 = concatenate([q2_embed, q2_encoded])
    q1_encoded2 = encode2(rnn_layer2_input1)
    q2_encoded2 = encode2(rnn_layer2_input2)

    # add res shortcut
    res_block1 = add([q1_encoded, q1_encoded2])
    res_block2 = add([q2_encoded, q2_encoded2])
    rnn_layer3_input1 = concatenate([q1_embed, res_block1])
    rnn_layer3_input2 = concatenate([q2_embed, res_block2])
    #     rnn_layer3_input1 = concatenate([q1_embed,q1_encoded,q1_encoded2])
    #     rnn_layer3_input2 = concatenate([q2_embed,q2_encoded,q2_encoded2])
    q1_encoded3 = encode3(rnn_layer3_input1)
    q2_encoded3 = encode3(rnn_layer3_input2)
    #     merged1 = GlobalMaxPool1D()(q1_encoded3)
    #     merged2 = GlobalMaxPool1D()(q2_encoded3)
    #     q1_encoded = concatenate([q1_encoded, q1_encoded2], axis=-1)
    #     q2_encoded = concatenate([q2_encoded, q2_encoded2], axis=-1)

    #     merged1 = concatenate([q1_encoded2, q1_embed], axis=-1)
    #     merged2 = concatenate([q2_encoded2, q2_embed], axis=-1)
    #     # TODO add attention rep , maxpooling rep
    q1_encoded3 = concatenate([q1_encoded, q1_encoded2, q1_encoded3])
    q2_encoded3 = concatenate([q2_encoded, q2_encoded2, q2_encoded3])
    merged1 = GlobalMaxPool1D()(q1_encoded3)
    merged2 = GlobalMaxPool1D()(q2_encoded3)
    # avg1 = GlobalAvgPool1D()(q1_encoded3)
    # avg2 = GlobalAvgPool1D()(q2_encoded3)
    # merged1 = concatenate([max1,avg1])
    # merged2 = concatenate([max2,avg2])
    sub_rep = Lambda(lambda x: K.abs(x[0] - x[1]))([merged1, merged2])
    mul_rep = Lambda(lambda x: x[0] * x[1])([merged1, merged2])
    #     jaccard_rep = Lambda(lambda x: x[0]*x[1]/(K.sum(x[0]**2,axis=1,keepdims=True)+K.sum(x[1]**2,axis=1,keepdims=True)-
    #                                               K.sum(K.abs(x[0]*x[1]),axis=1,keepdims=True)))([merged1,merged2])
    #     merged = Concatenate()([merged1, merged2, mul_rep, sub_rep,jaccard_rep])
    feature_input = Input(shape=(config['feature_length'], ))
    feature_dense = BatchNormalization()(feature_input)
    feature_dense = Dense(config['dense_dim'],
                          activation='relu')(feature_dense)

    merged = Concatenate()([merged1, merged2, mul_rep, sub_rep, feature_dense])
    # Classifier
    dense = Dropout(config['dense_dropout'])(merged)
    dense = BatchNormalization()(dense)
    dense = Dense(config['dense_dim'], activation='relu')(dense)
    dense = Dropout(config['dense_dropout'])(dense)
    dense = BatchNormalization()(dense)
    predictions = Dense(1, activation='sigmoid')(dense)
    model = Model(inputs=[q1, q2, feature_input], outputs=predictions)
    opt = optimizers.get(config['optimizer'])
    K.set_value(opt.lr, config['learning_rate'])
    model.compile(optimizer=opt, loss='binary_crossentropy', metrics=[f1])
    return model
コード例 #20
0
ファイル: rnn.py プロジェクト: amonkhouse/taybot
x = []
y = []

for lyrics in non_taylor_lyrics:
    for i in range(0, len(lyrics) - sequence_len, step):
        x.append(lyrics[i:i + sequence_len])
        y.append(lyrics[i + sequence_len])

train_x, test_x, train_y, test_y = train_test_split(x,
                                                    y,
                                                    train_size=0.8,
                                                    random_state=2)

model = Sequential()
model.add(Bidirectional(LSTM(128), input_shape=(sequence_len, total_words)))
model.add(Dropout(0.2))
model.add(Dense(total_words, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')


def generator(sentence_list, next_word_list, batch_size):
    index = 0
    while True:
        X = np.zeros((batch_size, sequence_len, total_words), dtype=np.bool)
        Y = np.zeros((batch_size, total_words), dtype=np.bool)
        for i in range(batch_size):
            for t, w in enumerate(sentence_list[index]):
                X[i, t, word_to_indices[w]] = 1
            Y[i, word_to_indices[next_word_list[index]]] = 1
コード例 #21
0
print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)  #returns numpy array
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
y_train = np.array(y_train)  #keras only accepts numpy arrays, not python lists
y_test = np.array(y_test)
x_train = np.array(x_train)
x_test = np.array(x_test)

#instantiate sequential model
model = Sequential()

#add layers to model (in order! because you are using a sequential model)
model.add(Embedding(max_features, 128))  #embeddings are 128 dim vectors
model.add(Bidirectional(LSTM(64)))  #LSTM layer has 64 units
model.add(Dropout(0.5))  #what proportion of inputs to set to 0
model.add(
    Dense(1, activation='sigmoid')
)  #single sigmoidal output, predicting either 0 or 1, negative or positive sentiment

#compile the model
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])

#train the model
print('Train...')
hist = model.fit(x_train,
                 y_train,
                 batch_size=batch_size,
                 epochs=1,
                 validation_data=[x_test, y_test])
print(sequences.shape)
X, y = sequences[:,:-1], sequences[:,-1]
#sequences = [to_categorical(x, num_classes=vocab_size) for x in X]
#X = array(sequences)
y = to_categorical(y, num_classes=vocab_size)
'''
print(X)
print(y)
exit()
'''
#X = X[:100,:]
#y = y[:100,:]

model = Sequential()
model.add(Embedding(vocab_size, 64, input_length=maxlen))
model.add(Bidirectional(LSTM(64)))
model.add(Dropout(0.5))
#model.add(Dense(1, activation='sigmoid'))
model.add(Dense(vocab_size, activation='sigmoid'))

# try using different optimizers and different optimizer configs
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])

print('Train...')
model.fit(X, y,
          batch_size=batch_size,
          epochs=5)

# get embeddings
embeddings = model.layers[0].get_weights()[0]
コード例 #23
0
    num_features = W.shape[1]  # 400
    logging.info("dimension num of word vector [num_features]: %d" %
                 num_features)

    Routings = 20
    Num_capsule = 60
    Dim_capsule = 120

    sequence_input = Input(shape=(maxlen, ), dtype='int32')
    embedded_sequences = Embedding(input_dim=max_features,
                                   output_dim=num_features,
                                   input_length=maxlen,
                                   weights=[W],
                                   trainable=False)(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule,
                      dim_capsule=Dim_capsule,
                      routings=Routings,
                      share_weights=True)(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.1)(capsule)
    output = Dense(4, activation='softmax')(capsule)
    model = Model(inputs=[sequence_input], outputs=output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy', f1])
    checkpointer = ModelCheckpoint(filepath="weights.hdf5",
                                   monitor='val_acc',
コード例 #24
0
                x[j, 0] = 1
        return x
    except:
        print(text)


def decoder_data(x):
    x = x.argmax(axis=-1)
    return "".join(alphabet[i] for i in x)


print(encoder_data("Tôi tên là việt hoàng").shape)
print(decoder_data(encoder_data("Tôi tên là Việt Hoàng")))

encoder = LSTM(256, input_shape=(MAXLEN, len(alphabet)), return_sequences=True)
decoder = Bidirectional(LSTM(256, return_sequences=True, dropout=0.2))
model = Sequential()
model.add(encoder)
model.add(decoder)
model.add(TimeDistributed(Dense(256)))
model.add(Activation("relu"))
model.add(TimeDistributed(Dense(len(alphabet))))
model.add(Activation("softmax"))
model.compile(loss="categorical_crossentropy",
              optimizer=Adam(lr=0.001),
              metrics=["accuracy"])

model.summary()
from keras.utils import plot_model

plot_model(model,
コード例 #25
0
                                                      test_size=0.2,
                                                      random_state=43)

batch_size = 32
epochs = 1
hash_bits = 128


def custom_activation(x):
    return (K.sigmoid(x) * 10)


visible = Input(shape=(X.shape[1], X.shape[2]))
blstm_1 = Bidirectional(
    LSTM(1024,
         dropout=0.1,
         recurrent_dropout=0.5,
         input_shape=(X.shape[1], X.shape[2]),
         return_sequences=True))(visible)
blstm_2 = Bidirectional(
    LSTM(1024,
         dropout=0.1,
         recurrent_dropout=0.5,
         input_shape=(X.shape[1], X.shape[2]),
         return_sequences=False))(blstm_1)
Dense_2 = Dense(hash_bits, activation=custom_activation)(blstm_2)
batchNorm = BatchNormalization()(Dense_2)
enver = Dense(128, activation='sigmoid')(batchNorm)
batchNorm2 = BatchNormalization()(enver)
Dense_3 = Dense(4, activation='sigmoid')(batchNorm2)
model = Model(input=visible, output=Dense_3)
print(model.summary())
コード例 #26
0
# 000001 00000001  [ TRASH - UNSTABLE ]
# 000001 0000001  [ TRASH - UNSTABLE ]
# 0000001 000000001  [ TRASH - UNSTABLE ]

# 00000001 0000000001  [BEST 32.32 + 21.58]
# 00000001 000000001   [MEDIUM 35.54 + 13.77]
# 0000001 0000000001     [MEDIUM 31.94 + 21.13]

# 000000001 00000000001  [ TRASH ]
# 000000001 0000000001  [ TRASH ]

# recurrent_dropout=0.1 (recurrent_dropout: 10% possibility to drop of the connections that simulate LSTM memory cells)
# units = 100 / 0.55 = 182 neurons (to account for 0.55 dropout)
model = Bidirectional(
    LSTM(units=100,
         return_sequences=True,
         activity_regularizer=l1(0.0000000001),
         recurrent_constraint=max_norm(2)))(
             model)  # input_shape=(1, MAX_LEN, VECT_SIZE)
# model = Dropout(0.3)(model)  # 0.5
# model = TimeDistributed(Dense(number_labels, activation="relu"))(model)  # a dense layer as suggested by neuralNer
model = Dense(number_labels, activation=None)(
    model)  # activation='linear' (they are the same)
crf = CRF()  # CRF layer { SHOULD I SET -> number_labels+1 (+1 -> PAD) }
out = crf(model)  # output
model = Model(inputs=inpt, outputs=out)

# set learning rate
#lr_rate = InverseTimeDecay(initial_learning_rate=0.05, decay_rate=4, decay_steps=steps_per_epoch)
# lr_rate = ExponentialDecay(initial_learning_rate=0.01, decay_rate=0.5, decay_steps=10000)

コード例 #27
0
hash_embedding = pd.read_csv('../preprocessing/chunk-auto-encoder-2/auto-encoder-embeddings.txt', delimiter=' ', header=None)
hash_embedding = hash_embedding.values
hash_embedding = np.concatenate([np.zeros((1,hash_length)),hash_embedding, np.random.rand(1,hash_length)])

embed_index_input = Input(shape=(step_length,))
embedding = Embedding(emb_vocab+2, emb_length, weights=[word_embedding], mask_zero=True, input_length=step_length)(embed_index_input)

hash_index_input = Input(shape=(step_length,))
encoder_embedding = Embedding(hash_vocab+2, hash_length, weights=[hash_embedding], mask_zero=True, input_length=step_length)(hash_index_input)

pos_input = Input(shape=(step_length, pos_length))

senna_hash_pos_merge = merge([embedding, encoder_embedding, pos_input], mode='concat')
input_mask = Masking(mask_value=0)(senna_hash_pos_merge)
dp_1 = Dropout(0.6)(input_mask)
hidden_1 = Bidirectional(LSTM(128, return_sequences=True))(dp_1)
hidden_2 = Bidirectional(LSTM(128, return_sequences=True))(hidden_1)
dp_2 = Dropout(0.6)(hidden_2)
output = TimeDistributed(Dense(output_length, activation='softmax'))(dp_2)
model = Model(input=[embed_index_input,hash_index_input,pos_input], output=output)

model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

print(model.summary())


number_of_train_batches = int(math.ceil(float(train_samples)/batch_size))
number_of_dev_batches = int(math.ceil(float(dev_samples)/batch_size))
コード例 #28
0
pool_4 = MaxPool2D(pool_size=(2, 1))(conv_4)

conv_5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool_4)
# Batch normalization layer
batch_norm_5 = BatchNormalization()(conv_5)

conv_6 = Conv2D(512, (3, 3), activation='relu', padding='same')(batch_norm_5)
batch_norm_6 = BatchNormalization()(conv_6)
pool_6 = MaxPool2D(pool_size=(2, 1))(batch_norm_6)

conv_7 = Conv2D(512, (2, 2), activation='relu')(pool_6)

squeezed = Lambda(lambda x: K.squeeze(x, 1))(conv_7)

# bidirectional LSTM layers with units=128
blstm_1 = Bidirectional(LSTM(500, return_sequences=True,
                             dropout=0.2))(squeezed)
blstm_2 = Bidirectional(LSTM(500, return_sequences=True, dropout=0.2))(blstm_1)

outputs = Dense(len(char_list) + 1, activation='softmax')(blstm_2)

# model to be used at test time
act_model = Model(inputs, outputs)

labels = Input(name='the_labels', shape=[max_label_len], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')


def ctc_lambda_func(args):
    y_pred, labels, input_length, label_length = args
    # the 2 is critical here since the first couple outputs of the RNN
コード例 #29
0
print('data preprocessing finished.')

#model1 start
Inputshape = (len(PPG_train[0]), len(PPG_train[0][0]))
X_input = Input(Inputshape)
X_CNN = Conv1D(64, 3, border_mode='same', activation='relu')(X_input)
X_CNN = Dropout(0.25)(X_CNN)
X_CNN = Conv1D(64, 3, border_mode='same', activation='relu')(X_CNN)
X_CNN = Dropout(0.25)(X_CNN)
X_CNN = Conv1D(128, 3, border_mode='same', activation='relu')(X_CNN)
X_CNN = Dropout(0.25)(X_CNN)
X_CNN = Conv1D(128, 3, border_mode='same', activation='relu')(X_CNN)
X_CNN = Dropout(0.25)(X_CNN)

LayerUnits = 256
X0 = Bidirectional(GRU(LayerUnits, return_sequences=True),
                   merge_mode='concat')(X_CNN)
X0 = Dropout(0.2)(X0)
X0 = Activation('relu')(X0)

X = GRU(LayerUnits, return_sequences=True)(X0)
X = Dropout(0.2)(X)
X = Activation('relu')(X)

X1 = GRU(LayerUnits, return_sequences=True)(X)
X1 = Dropout(0.2)(X1)
X1 = Activation('relu')(X1)

#X2 = concatenate([X, X1])
X2 = GRU(LayerUnits, return_sequences=True)(X1)
X2 = Dropout(0.2)(X2)
X2 = Activation('relu')(X2)
コード例 #30
0
ファイル: train11.py プロジェクト: prprprpony/ML2019SPRING
    ret = pad_sequences(ret, maxlen=MAX_LENGTH)
    return ret


emb = pickle.load(open('emb.pickle', 'rb'))
model = None
if len(sys.argv) == 2:
    print("load " + sys.argv[1] + " to keep training")
    model = load_model(sys.argv[1])
else:
    model = Sequential()
    model.add(emb)
    model.add(
        Bidirectional(
            GRU(units=64,
                return_sequences=True,
                dropout=0.2,
                recurrent_dropout=0.2)))
    model.add(
        Bidirectional(
            GRU(units=32,
                return_sequences=True,
                dropout=0.2,
                recurrent_dropout=0.2)))
    model.add(
        Bidirectional(
            GRU(units=16,
                return_sequences=True,
                dropout=0.2,
                recurrent_dropout=0.2)))
    model.add(