コード例 #1
0
    def call(self, x, mask=None):
        uit = dot_product(x, self.W)

        if self.bias:
            uit += self.b

        uit = K.tanh(uit)
        ait = dot_product(uit, self.u)
        # ait = K.dot(uit, self.u)

        a = K.exp(ait)

        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())

        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
        # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        a = K.expand_dims(a)
        weighted_input = x * a
        return K.sum(weighted_input, axis=1)
コード例 #2
0
def squash(x, axis=-1):
    # s_squared_norm is really small
    # s_squared_norm = K.sum(K.square(x), axis, keepdims=True) + K.epsilon()
    # scale = K.sqrt(s_squared_norm)/ (0.5 + s_squared_norm)
    # return scale * x
    s_squared_norm = K.sum(K.square(x), axis, keepdims=True)
    scale = K.sqrt(s_squared_norm + K.epsilon())
    return x / scale
コード例 #3
0
def recall(y_true, y_pred):
    """Recall metric.
    Only computes a batch-wise average of recall.
    Computes the recall, a metric for multi-label classification of
    how many relevant items are selected.
    """
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
    recall = true_positives / (possible_positives + K.epsilon())
    return recall
コード例 #4
0
def precision(y_true, y_pred):
    """Precision metric.
    Only computes a batch-wise average of precision.
    Computes the precision, a metric for multi-label classification of
    how many selected items are relevant.
    """
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
    precision = true_positives / (predicted_positives + K.epsilon())
    return precision
コード例 #5
0
def squash(vectors, axis=-1):
    """
    The non-linear activation used in Capsule. It drives the length of a large vector to near 1 and small vector to 0
    :param vectors: some vectors to be squashed, N-dim tensor
    :param axis: the axis to squash
    :return: a Tensor with same shape as input vectors
    """
    s_squared_norm = K.sum(K.square(vectors), axis, keepdims=True)
    scale = s_squared_norm / (1 + s_squared_norm) / K.sqrt(s_squared_norm + K.epsilon())
    return scale * vectors
コード例 #6
0
ファイル: dnn_util.py プロジェクト: ziqizhang/wop
    def call(self, x, mask=None):
        # size of x :[batch_size, sel_len, attention_dim]
        # size of u :[batch_size, attention_dim]
        # uit = tanh(xW+b)
        uit = K.tile(K.expand_dims(self.W, axis=0), (K.shape(x)[0], 1, 1))
        uit = tf.matmul(x, uit)
        uit = K.tanh(K.bias_add(uit, self.b))
        ait = K.dot(uit, self.u)
        ait = K.squeeze(ait, -1)

        ait = K.exp(ait)

        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            ait *= K.cast(mask, K.floatx())
        ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx())
        ait = K.expand_dims(ait)
        weighted_input = x * ait
        output = K.sum(weighted_input, axis=1)

        return output
コード例 #7
0
    def call(self, x, mask=None):
        features_dim = self.features_dim
        step_dim = self.step_dim

        eij = K.reshape(K.dot(K.reshape(x, (-1, features_dim)),
                        K.reshape(self.W, (features_dim, 1))), (-1, step_dim))

        if self.bias:
            eij += self.b

        eij = K.tanh(eij)

        a = K.exp(eij)

        if mask is not None:
            a *= K.cast(mask, K.floatx())

        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        a = K.expand_dims(a)
        weighted_input = x * a
        return K.sum(weighted_input, axis=1)
コード例 #8
0
 def f1_m(y_true, y_pred):
     precision = precision_m(y_true, y_pred)
     recall = recall_m(y_true, y_pred)
     return 2 * ((precision * recall) / (precision + recall + K.epsilon()))
コード例 #9
0
 def precision_m(y_true, y_pred):
     true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
     predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
     precision = true_positives / (predicted_positives + K.epsilon())
     return precision
コード例 #10
0
 def recall_m(y_true, y_pred):
     true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
     possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
     recall = true_positives / (possible_positives + K.epsilon())
     return recall
コード例 #11
0
def euclidean_distance(vects):
    x, y = vects
    sum_square = K.sum(K.square(x - y), axis=1, keepdims=True)
    return K.sqrt(K.maximum(sum_square, K.epsilon()))
コード例 #12
0
def squash(x, axis=-1):
    s_squared_norm = K.sum(K.square(x), axis, keepdims=True)
    scale = K.sqrt(s_squared_norm + K.epsilon())
    return x / scale
コード例 #13
0
def squash_v4(s, axis=-1, epsilon=1e-7, name=None):
    s_squared_norm = K.sum(K.square(s), axis, keepdims=True) + K.epsilon()
    safe_norm = K.sqrt(s_squared_norm)
    scale = 1 - tf.exp(-safe_norm)
    return scale * s / safe_norm
コード例 #14
0
def squash_v3(x, axis=-1):
    s_squared_norm = K.sum(K.square(x), axis, keepdims=True) + K.epsilon()
    scale = K.sqrt(s_squared_norm) / (0.5 + s_squared_norm)
    return scale * x