def build_model(): model = Sequential() model.add( Conv2D(nb_filters, kernel_size=kernel_size, input_shape=shape_ord)) model.add(Activation('relu')) model.add(Conv2D(nb_filters // 2, kernel_size=kernel_size)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=pool_size)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax'))
train_data = dataframe_from_csvs(train_list) test_data = dataframe_from_csvs(test_list) train_data.to_csv('./Data/dacon/comp5/train.csv') test_data.to_csv('./Data/dacon/comp5/test.csv') train_data = pd.read_csv('./Data/dacon/comp5/train.csv', header=0, index_col=0) test_data = pd.read_csv('./Data/dacon/comp5/test.csv', header=0, index_col=0) # print(train_data,test_data) # [550800 rows x 63 columns] # [444600 rows x 63 columns] scal = StandardScaler() scal.fit(train_data) train_data = scal.transform(train_data) test_data = scal.transform(test_data) x = train_data[:, 1:-4] y = train_data[:, -3:] print(x.shape, y.shape) print(x[0, -1]) print(y[0, 0]) # print(x) # print(y) model = Sequential() model.add(Conv1D)
epoch_count = 200 input_shape = (32,32) num_channels = 3 (all_train_x, all_train_y), (all_test_x, all_test_y) = cifar10.load_data() all_train_x = all_train_x.astype('float32') all_test_x = all_test_x.astype('float32') all_train_y = np_utils.to_categorical(all_train_y, classes_count) all_test_y = np_utils.to_categorical(all_test_y, classes_count) model = Sequential() model.add(Convolution2D(32,3,3,border_mode = 'same', input_shape=all_train_x.shape[1:])) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size = (2,2)) model.add(Dropout(0,25)) model.add(Convolution2D(64,3,3,border_mode = 'same')) model.add(Activation('relu')) model.add(Convolution2D(64,3,3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size = (2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu'))
from keras.model import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(100, input_dim=128, init='uniform', activation='relu')) model.add(Dense(100, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, Y_train, validation_data=(X_test, Y_test), nb_epoch=500, batch_size=10, verbose=2) #training accuracy scores = model.evaluate(X_train, Y_train) print("Accuracy: %.2f%%" % (scores[1] * 100)) #testing accuracy scores2 = model.evaluate(X_test, Y_test) print("Accuracy: %.2f%%" % (scores2[1] * 100))
Output = Test.iloc[:, 2].values # Setting up dataframes for 10 - cross validation from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(NN_Data, Output, test_size = 0.1,random_state = 0) # feature scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # NEURAL NETWORK TIME! import keras from keras.model import Sequential from keras.layers import Dense NN = Sequential() # Input and 1st hidden layer NN.add(Dense(output_dim = 2, init = 'uniform', activation = 'relu', input_dim = 3)) # Second hidden layer NN.add(Dense(output_dim = 1, init = 'uniform', activation = 'relu')) # training the NN NN.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics = ['accuracy']) NN.fit(X_train, y_train, batch_size = 10, nb_epoch = 100)
""" Created on Wed Apr 10 12:13:40 2019 @author: AN20027664 """ #import Keras lib from keras.model import Sequential #for sequential modeling for CNN from keras.layers import Convolution2D # for convolution layers from keras.layers import MaxPooling2D # for maxpooling from keras.layers import Flatten #for flattening from keras.layers import Dense # for full-connections in hidden layer classifier = Sequential() classifier.add( Convolution2D(32, 3, 3, input_shape=(64, 64, 3), activation='relu') ) #32,3,3 is number of filters having 3X3 size and Input_shape 64X64 for RGB(3) classifier.add(MaxPooling2D(pool_size(2, 2))) classifier.add( Convolution2D(32, 3, 3, activation='relu') ) #32,3,3 is number of filters having 3X3 size and Input_shape 64X64 for RGB(3) classifier.add(MaxPooling2D(pool_size(2, 2))) classifier.add(Dense(output_dim=128, activation='relu')) classifier.add(Dense(output_dim=1, activation='sigmoid')) #compliling classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) from keras.preprosessing.image import ImageDataGenerator
loss='hinge') siamese.set_weight(siamese_theano) get_feature100 = theano.function(siamese.layers[0].input, siamese.layers[-2].output) feat_x = get_feature100(train_x) knn = KNeighborsClassifier(n_neighbors=5) knn.fit(feat_x) feat_neighbor = np.empty((n_samples, 6, feat_x.shape[1])) for sample in xrange(n_samples): neighbor_x = knn.kneighbors(feat_x[sample]) feat_neighbor[sample, :5, :] = neighbor_x feat_neighbor[sample, 5, :] = feat_x[sample] rnn = Sequential() rnn.add(LSTM(100, input_shape=(5, 100), activation='tanh')) rnn.add(Dense(n_labels, activation='softmax')) rnn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) rnn.fit(feat_neighbor, train_y, batch_size=5, nb_epoch=10, verbose=1)
""" Testing for easiness of making perceptron in python :) """ from keras.model import Sequential from keras.layer import Dense import numpy numpy.random.seed(7) dataset = numpy.loadtxt("/home/vaishnav/MLP/Wine data/train.csv", delimiter=",") n = input("Enter Number of Neurons\n") X = dataset[:, :13] Y = dataset[:, 13] model = Sequential() model.add(Dense(14, input_dim=13, init="uniform", activation='sigmoid')) model.add(Dense(n, init="uniform", activation="sigmoid")) model.add(Dense(3, init="uniform", activation="sigmoid"))
def create_model_dynamic_rasha(self,x_train,y_train,x_val,y_val): from hyperas.distributions import choice model = Sequential() model.add(Conv2D(filters= 32, kernel_size=(3, 3),padding="same", activation='relu',kernel_initializer='uniform', input_shape=(x_train.shape[1], x_train.shape[2], 1))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2),strides=(2, 2))) model.add(Conv2D(filters=64,kernel_size=(3, 3), activation='relu', kernel_initializer='uniform')) model.add(Conv2D(filters=64,kernel_size=(3, 3), activation='relu', kernel_initializer='uniform')) model.add(MaxPooling2D(pool_size=(2, 2)))
x_train = np.array(images) y_train = np.array(measurements) from keras.model import Sequential from keras.layers import Flatten, dense, Lambda model = Sequential() # lambda layer for normalization model.add(Lambda(Lambda x: x / 255.0, input_shape = (160, 320, 3))) model.add(Flatten()) model.add(Dense(1)) model.compile(loss="mse", optimizer="adam") model.fit(x_train, y_train, validation_split=0.2, shuffle=True, nb_epoch=5)
def create_model_static_rasha(self,x_train): model = Sequential() model.add(Conv2D(filters= 32, kernel_size=(3, 3),padding="same", activation='relu',kernel_initializer='uniform', input_shape=(Cfg.image_width, Cfg.image_height, Cfg.channels))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2),strides=(2, 2))) model.add(Conv2D(filters=64,kernel_size=(3, 3), activation='relu', kernel_initializer='uniform')) model.add(Conv2D(filters=64,kernel_size=(3, 3), activation='relu', kernel_initializer='uniform')) model.add(MaxPooling2D(pool_size=(2, 2)))
from keras.model import Sequential from keras.layers import Dense, Dropout from keras.optimizers import SGD model = Sequential() model.add(Dense(64, input_dim=20, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) model.fit(x_train, y_train, epochs=20, batch_size=128) score = model.evaluate(x_test, y_test, batch_size=128) ''' model = Sequential() # Dense(64) is a fully-connected layer with 64 hidden units. # in the first layer, you must specify the expected input data shape: # here, 20-dimensional vectors. model.add(Dense(64, activation='relu', input_dim=20)) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd,
# Building Convolution Neural Network from keras.model import Sequential from keras.layers import Convolution2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense # Initialize Convolution Neural Network model = Sequential() # Adding Convolution Layer - Get the Feature Map. Input Image X Feature Detector = Feature Map model.add(Convolution2D(nb_filter,nb_row,nb_col,border_mode = 'same',input_shape = (3,256,256),activation = 'relu')) """ nb_filter is the number of feature detectors. Start with 32~64~128~256 nb_row is the number of rows in feature detector matrix Start with 3 nb_col is the number of column in feature detector matrix Start with 3 border_mode how the feature detector handle border value input_shape tells us about what is the expected format of the images. Color image is a 3d image 3~colors(red,blue,green),256~pixels,256~pixels (3,256,256) is for Theano (256,256,3) is for Tensorflow activation is the activation function for layers. Here we are using Rectifier Function """ # Pooling - Max Pool. Will be applied on each of the feature map. And will reduce the size of the feature maps model.add(MaxPooling2D(poolsize = (2,2))
train_target[0] # In[15]: from keras.model import Sequential from keras.layers import Dense,Flatten model = Sequential() #creating a new sequaentail type empty NN model #we cant directly apply the 2D image to te NN -> so have to flatten the image-> 1x (28x28) #convert 2D image to flatten layer #784 neurons for the first layer #this is the first inpiut layer model.add(Flatten(input_shape=(28,28))) #this is a classification problem model.add(Dense(512,activate='relu')) model.add(Dense(256,activate='relu')) model.add(Dense(128,activate='relu')) model.add(Dense(64,activate='relu')) model.add(Dense(10,activate='softmax')) #here we have 10 types of numbers: 0-9 #compile the model model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) model.summary() # In[ ]:
X_train = X_train.reshape(X_train.shape[0], *(28, 28, 1)) X_test = X_test.reshape(X_test.shape[0], *(28, 28, 1)) X_validate = X_validate.reshape(X_validate.shape[0], *(28, 28, 1)) X_train.shape X_test.shape X_validate.shape import keras from keras.model import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from keras.optimizers import Adam from keras.callbacks import TensorBoard cnn_model = Sequential() cnn_model.add(Conv2D(32, 3, 3, input_shape = (28, 28, 1), activation = 'relu')) cnn_model.add(MaxPooling2D(pool_size = (2,2))) cnn_model.add(Flatter()) cnn_model.add(Dense(output_dim = 32, activation = 'relu')) cnn_model.add(Dense(output_dim = 32, activation = 'sigmoid')) cnn_model.compile(loss ='asparse_categorical_crossentropy', optimizersadam(lr=0.001), matrics =['accuracy']) epochs = 50 cnn_model.fix(X_train, y_train,batch_size = 512, nb_epoch = epochs, verbose = 1, validation_data = (X_validate, y_validate)) #evaluating the model evaluation = cnn_model.evaluate(X_test, y_test) print('Test Accuracy : {:.3f}'.format(evaluation[1])) predicted_classes = cnn_model.predict_classes(X_test) predicted_classes
# binary classes model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # mean square root model.compile(optimizer='rmsprop', loss='mse') # user defined metrics def mean_pred(y_true, y_pred) return K.mean(y_pred) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy', mean_pred]) # train # generate dataset # binary import numpy as np data = np.random.random((1000, 100)) labels = np.random.randint(2, size=(1000, 1)) model = Squential() model.add(Dense(32, activation='relu', input_dim=100)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss = 'binary_crossentropy', metrics=['accuracy']) model.fit(data, labels, epochs=10, batch_size=32) # multiple labels = np.random.randint(10, size=(1000, 1)) one_hot_labels = keras.utils.to_categorical(label, num_classes=10) model.fit(data, one_hot_labels, epoches=10, batch_size=32)
from keras.model import Sequential from keras.layers import Conv2D model = Sequential() model.add( Conv2D(filters=16, kernel_size=2, striders=2, padding='valid', activation='relu', input_shape=(200, 200, 1))) model.summary()
x = trainDataset[:-1, :] y = trainDataset[1:, :] from keras.model import Sequential from keras.layers import Dense from keras.layers import LSTM model = Sequential() model.add(LSTM(units=32, activation='sigmoid', input_shape=(None, 1))) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(x, y, epochs=100, batch_size=32) realStock = pd.read_csv('Google_Stock_Price_Test.csv') realStock = realStock.iloc[:, 4:5].values plt.plot(realStock, 'r')
def build_model(layers): model = Sequential() model.add( LSTM(input_shape=(layers[1], layers[0]), output_dim=layers[1], return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(layers[2], return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(output_dim=layers[3])) model.add(Activation("linear")) start = time.time() model.compile(loss="mse", optimizer="rmsprop") print("> Compilation Time : ", time.time() - start) return model
from keras.model import Sequential from keras.layers import Dense from keras import regularizers, optimizers from datetime import datetime # keep track of starting time start = datetime.now() ###################### part ten -- set up model ########################### classifier = Sequential() """ kernel_initializer: difference between 'uniform' and others activation: difference between 'relu' and 'linear' """ classifier.add( Dense( units=128, kernel_initializer = 'uniform', activation = 'relu', input_dim = X_train.shape[1])) # first layer need to assign 'input_dim' classifier.add( Dense( units=128, kernel_initializer = 'uniform', activation = 'relu')) classifier.add( Dense( units=128, kernel_initializer = 'uniform', activation = 'relu')) classifier.add( Dense( units=64, kernel_initializer = 'uniform', activation = 'relu')) classifier.add( Dense( units=64, kernel_initializer = 'uniform', activation = 'relu')) classifier.add( Dense( units=64, kernel_initializer = 'uniform', activation = 'relu')) classifier.add( Dense( units=32, kernel_initializer = 'uniform', activation = 'relu')) classifier.add( Dense( units=32, kernel_initializer = 'uniform', activation = 'relu')) classifier.add( Dense( units=32, kernel_initializer = 'uniform', activation = 'relu')) classifier.add( Dense( units=1, kernel_initializer = 'uniform', activation = 'linear')) ################### part eleven -- define optimizer ############################### RMSprop = optimizers.RMSprop(lr=0.001) # can tune learning rate here ################## part twelve -- compile model ################################# classifier.compile(optimizer = RMSprop, loss = 'mean_squared_error', metrics = ['accuracy']) # can add more metrics, can change loss based on purpose
#Making sure that the values are float so that we can get decimal points after division x_train = x_train.astype('float32') x_test = x_test.astype('float32') #Normalizing the RGB codes by dividing it to the max RGB values x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print('NUmber of images in x_train', x_train.shape[0]) print('Number of images in x_test', x_test.shape[0]) #Import the required Keras modules containing model and layers from keras.model import Sequential from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D #Creating a sequential model and adding the layers model = Sequential() model.add(Conv2d(28, kernel_size=(3, 3), input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) #Flatten the 2D arrays for the fully connected layers model.add(Dense(128, activation=tf.nn.relu)) model.add(Dropout(0.2)) model.add(Dense(10, activation=tf.nn.softmax)) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x=x_train, y=y_train, epochs=10) model.evauate(x_test, y_test)