def load_h5(cellar_path): """ return hdf5 model loaded from cellar path """ if not cellar_path[0] == '/': cellar_path = '/'+cellar+path config = _configs.Config() return _load_model(config.resolve_paths(cellar_path))
def __init__(self): _common_model.__init__(self) # Define sample directory self.sample_dir = _os.path.join(self.sample_dir, 'rotation') # Load compiled model self._mod = _load_model('rot_mod.h5') # Load category (i.e. 'class') names self._class_names = _np.load('rot_class_names.npy') self.class_name_dict = dict([[v, k] for k, v in self._class_names])
def load_uncompiled_model(filepath): ''' Loads the specified Keras model without compiling it. NB Model can be either compiled or uncompiled. Arguments: filepath - the filepath of the model Returns: model - a keras.models.Sequential object ''' return _load_model(filepath, compile=False)
def load_model(filepath): ''' Loads and compiles the specified Keras model. NB Model must have been pre-compiled with an optimiser Arguments: filepath - the filepath of the model Returns: model - a keras.models.Sequential object ''' return _load_model(filepath, custom_objects=CUSTOM_OBJ_DICT)
def load_model(modelf, **kwargs): from keras.models import clone_model as _clone_model, Sequential, \ load_model as _load_model # import these since keras doesn't load them by default #from AdamW import AdamW #from SGDW import SGDW custom_objects = kwargs.pop('custom_objects', {}) #custom_objects['AdamW'] = AdamW #custom_objects['SGDW'] = SGDW flatten = kwargs.pop('flatten', False) model = _load_model(modelf, custom_objects=custom_objects, **kwargs) if flatten and model.layers[0].name.startswith('sequential_'): _model = _clone_model(model.layers[0]) for layer in model.layers[1:]: _model.add(layer) model = _model return model
def load_model(model): with warnings.catch_warnings(): warnings.simplefilter("ignore") return _load_model(model)
def load_model(file_h5): """Load model from file.""" model = _load_model(file_h5) # FIXME see keras#6462 model._make_predict_function() return model
def load_model() -> Model: return _load_model(resource_filename( Requirement.parse("ca2spike"), "ca2spike/data/model_{}.h5".format(K.backend())), custom_objects={"_pearson_corr": pearson_corr})
def load_model() -> Model: return _load_model(str(rotation_model_config.MODEL_PATH))