model.add(Dense(20, activation='relu', input_dim=len(elo_data.columns) - 1)) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) model.fit(X_train_elo, Y_train_elo, epochs=10, batch_size=50, validation_split=0.2, verbose=1) model.test_on_batch(X_test_elo, Y_test_elo, sample_weight=None) model.evaluate(X_test_elo, Y_test_elo, verbose=1) pred = model.predict_classes(X_test_elo, verbose=1) plot_model(model, to_file='model.png', show_shapes=True) SVG(model_to_dot(model).create(prog='dot', format='svg')) print(confusion_matrix(Y_test_elo, pred)) print classification_report(Y_test_elo, pred) print(accuracy_score(Y_test_elo, pred)) fpr_elo, tpr_elo, thresholds_elo = roc_curve(Y_test_elo, pred) auc = auc(fpr_elo, tpr_elo) plt.figure(1)
model.add(Dense(100, activation='relu', input_dim=X_data.shape[1])) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy']) model.fit(X_train_Perf_based, Y_train_Perf_based, epochs=100, batch_size=20, validation_split=0.3, verbose=1) model.test_on_batch(X_test_Perf_based, Y_test_Perf_based, sample_weight=None) pred_Perf_based = model.predict_classes(X_test_Perf_based, verbose=1) print(confusion_matrix(Y_test_Perf_based, pred_Perf_based)) print classification_report(Y_test_Perf_based, pred_Perf_based) print(accuracy_score(Y_test_Perf_based, pred_Perf_based)) fpr_Perf_based, tpr_Perf_based, thresholds_Perf_based = roc_curve( Y_test_Perf_based, pred_Perf_based) auc_keras = auc(fpr_Perf_based, tpr_Perf_based) plt.figure(1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_Perf_based, tpr_Perf_based,