コード例 #1
0
def resnet50():
    """
    resnet50的基础特征提取网络
    :return: 
    """
    bn_axis = 3
    input_tensor = Input(shape=(224, 224, 3))
    # resnet50基础网络部分
    x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(input_tensor)
    x = layers.Conv2D(64, (7, 7),
                      strides=(2, 2),
                      padding='valid',
                      kernel_initializer='he_normal',
                      name='conv1')(x)
    x = layers.BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = layers.Activation('relu')(x)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
    ''' 
    # 选定trainable的层,默认全部训练
    base_model = Model(inputs=img_input, outputs=x)
    for layer in base_model.layers:
        if isinstance(layer, BatchNormalization):
            layer.trainable = True
        else:
            layer.trainable = False
    '''
    return input_tensor, x
コード例 #2
0
ファイル: model.py プロジェクト: allenlu2009/tensorflow2
def ResNet50_lr(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format='channels_last'` in your Keras config
    at ~/.keras/keras.json.

    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 197.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=64,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), padding='valid', name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    # x = AveragePooling2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
        else:
            weights_path = get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                md5_hash='a268eb855778b3df3c7506639542a6af')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)
            if include_top:
                maxpool = model.get_layer(name='avg_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1000')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')

        if K.image_data_format() == 'channels_first' and K.backend(
        ) == 'tensorflow':
            warnings.warn('You are using the TensorFlow backend, yet you '
                          'are using the Theano '
                          'image data format convention '
                          '(`image_data_format="channels_first"`). '
                          'For best performance, set '
                          '`image_data_format="channels_last"` in '
                          'your Keras config '
                          'at ~/.keras/keras.json.')
    elif weights is not None:
        model.load_weights(weights)

    return model
コード例 #3
0
    def ResNet50(self):

        classes = self.num_classes
        img_input = Input(shape=self.input_shape)
        x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
        x = layers.Conv2D(64, (7, 7),
                          strides=(2, 2),
                          padding='valid',
                          name='conv1')(x)

        x = layers.BatchNormalization(axis=3, name='bn_conv1')(x)
        x = layers.Activation('relu')(x)
        x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

        x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
        x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
        x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

        x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

        x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

        x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

        x = layers.AveragePooling2D((7, 7), name='avg_pool')(x)
        x = layers.Flatten()(x)

        x = layers.Dense(classes, activation='softmax', name='fc1000')(x)
        model = models.Model(img_input, x, name='resnet50')
        return model
コード例 #4
0
    def KerasModelResNet(self, imgInput):
        """
        Construct resNet. The image size is 150*150, which is suitable for image.
        """
        bn_axis = 3

        x = ZeroPadding2D((3, 3))(imgInput)
        x = Convolution2D(8, 7, strides=(2, 2), name='conv1')(x)
        x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
        x = Activation('relu')(x)
        x = MaxPooling2D((3, 3), strides=(2, 2))(x)

        x = conv_block(x, 3, [8, 8, 16], stage=2, block='a', strides=(1, 1))
        x = identity_block(x, 3, [8, 8, 16], stage=2, block='b')
        x = identity_block(x, 3, [8, 8, 16], stage=2, block='c')

        x = conv_block(x, 3, [16, 16, 32], stage=3, block='a')
        x = identity_block(x, 3, [16, 16, 32], stage=3, block='b')
        x = identity_block(x, 3, [16, 16, 32], stage=3, block='c')
        x = identity_block(x, 3, [16, 16, 32], stage=3, block='d')

        x = conv_block(x, 3, [32, 32, 64], stage=4, block='a')
        x = identity_block(x, 3, [32, 32, 64], stage=4, block='b')
        x = identity_block(x, 3, [32, 32, 64], stage=4, block='c')
        x = identity_block(x, 3, [32, 32, 64], stage=4, block='d')
        x = identity_block(x, 3, [32, 32, 64], stage=4, block='e')
        x = identity_block(x, 3, [32, 32, 64], stage=4, block='f')

        x = conv_block(x, 3, [64, 64, 128], stage=5, block='a')
        x = identity_block(x, 3, [64, 64, 128], stage=5, block='b')
        x = identity_block(x, 3, [64, 64, 128], stage=5, block='c')

        x = conv_block(x, 3, [64, 64, 256], stage=6, block='a')
        x = identity_block(x, 3, [64, 64, 256], stage=6, block='b')
        x = identity_block(x, 3, [64, 64, 256], stage=6, block='c')

        x = GlobalAveragePooling2D()(x)
        # x = Flatten()(x)
        x = Dense(self.featureDim,
                  kernel_regularizer=regularizers.l2(0.0002),
                  activity_regularizer=regularizers.l1(0.0002),
                  name='fc_feature')(x)
        x = PReLU()(x)
        return x
コード例 #5
0
ファイル: backbone.py プロジェクト: yizt/keras-lbl-IvS
def resnet50(inputs):
    # Determine proper input shape
    bn_axis = 3

    # x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(inputs)
    x = layers.Conv2D(64, (3, 3), strides=(1, 1), padding='same',
                      name='conv1')(inputs)
    x = layers.BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = layers.Activation('relu')(x)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 64], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 64], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 64], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 128], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 128], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 128], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 128], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 256], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 256], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 256], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 256], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 256], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 256], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 512], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 512], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 512], stage=5, block='c')

    # # 确定精调层
    # no_train_model = Model(inputs=img_input, outputs=x)
    # for l in no_train_model.layers:
    #     if isinstance(l, layers.BatchNormalization):
    #         l.trainable = True
    #     else:
    #         l.trainable = False

    # model = Model(input, x, name='resnet50')
    x = layers.GlobalAveragePooling2D()(x)
    # # 新增一个全连接层降维
    # x = layers.Dense(units=512)(x)
    return x
コード例 #6
0
ファイル: model_resnet.py プロジェクト: zjj421/njai_challenge
def resnet50_unet_sigmoid(
        input_shape=(IMG_H, IMG_W, IMG_C), weights='imagenet'):
    inp = Input(input_shape)

    x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(inp)
    x = layers.Conv2D(64, (7, 7),
                      strides=(2, 2),
                      padding='valid',
                      name='conv1')(x)
    x = layers.BatchNormalization(axis=BN_AXIS, name='bn_conv1')(x)
    x = layers.Activation('relu')(x)
    c1 = x
    # print("c1")
    # print(c1.shape)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
    c2 = x
    # print("c2")
    # print(c2.shape)

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
    c3 = x
    # print("c3")
    # print(c3.shape)

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
    c4 = x
    # print("c4")
    # print(c4.shape)

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
    c5 = x
    # print("c5")
    # print(c5.shape)

    u6 = conv_block_custom(UpSampling2D()(c5), 1024)
    # print("u6")
    # print(u6.shape)
    u6 = concatenate([u6, c4], axis=-1)
    u6 = conv_block_custom(u6, 1024)

    u7 = conv_block_custom(UpSampling2D()(u6), 512)
    # print("u7")
    # print(u7.shape)
    u7 = concatenate([u7, c3], axis=-1)
    u7 = conv_block_custom(u7, 512)

    u8 = conv_block_custom(UpSampling2D()(u7), 256)
    # print("u8")
    # print(u8.shape)
    u8 = concatenate([u8, c2], axis=-1)
    u8 = conv_block_custom(u8, 256)

    u9 = conv_block_custom(UpSampling2D()(u8), 64)
    # print("u9")
    # print(u9.shape)
    u9 = concatenate([u9, c1], axis=-1)
    u9 = conv_block_custom(u9, 64)

    u10 = conv_block_custom(UpSampling2D()(u9), 32)
    u10 = conv_block_custom(u10, 32)

    res = Conv2D(2, (1, 1), activation='sigmoid')(u10)

    model = Model(inp, res)

    if weights == "imagenet":
        resnet50 = ResNet50(weights=weights,
                            include_top=False,
                            input_shape=(input_shape[0], input_shape[1], 3))
        # resnet50.summary()
        print("Loading imagenet weitghts ...")
        for i in tqdm(range(3, len(resnet50.layers) - 2)):
            try:
                model.layers[i].set_weights(resnet50.layers[i].get_weights())
                model.layers[i].trainable = False
            except:
                print(resnet50.layers[i].name)
                exit()
        print("imagenet weights have been loaded.")
        del resnet50

    return model
コード例 #7
0
ファイル: custom_resnets.py プロジェクト: nphilou/rasta
def custom_resnet(n=0, dp_rate=0):
    WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5'
    WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'

    # Determine proper input shape
    # input_shape = _obtain_input_shape(input_shape,default_size=224,min_size=197,data_format=K.image_data_format(),include_top=include_top)

    img_input = Input(shape=(224, 224, 3))

    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = Dropout(dp_rate)(x)

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = Dropout(dp_rate)(x)

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    x = Flatten()(x)
    x = Dense(25, activation='softmax', name='fc1000')(x)
    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.

    inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights

    weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                            WEIGHTS_PATH_NO_TOP,
                            cache_subdir='models',
                            md5_hash='a268eb855778b3df3c7506639542a6af')
    model.load_weights(weights_path, by_name=True)

    split_value = True  # len(model.layers) + 1 - n
    for layer in model.layers[:split_value]:
        layer.trainable = False
    for layer in model.layers[split_value:]:
        layer.trainable = True

    return model
コード例 #8
0
ファイル: custom_resnets.py プロジェクト: nphilou/rasta
def resnet_dropout(include_top=False, weights='imagenet', input_tensor=None, pooling='avg', input_shape=(224, 224, 3),
                   classes=25, dp_rate=0., n_retrain_layers=0):
    WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5'
    WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    # input_shape = _obtain_input_shape(input_shape,default_size=224,min_size=197,data_format=K.image_data_format(),include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = Dropout(dp_rate)(x)
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels.h5',
                                    WEIGHTS_PATH,
                                    cache_subdir='models',
                                    md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
        else:
            weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                                    WEIGHTS_PATH_NO_TOP,
                                    cache_subdir='models',
                                    md5_hash='a268eb855778b3df3c7506639542a6af')
        model.load_weights(weights_path)

    split_value = len(model.layers) + 1 - n_retrain_layers
    for layer in model.layers[:split_value]:
        layer.trainable = False
    for layer in model.layers[split_value:]:
        layer.trainable = True

    return model