from torch import optim as tOpt from keras_callbacks import ProgressBarCallback as bar import imageio PHRASE = "TRAIN" DIMENSION = 2 iterations = 3000 cuda = False bs = 2000 z_dim = 2 input_path = "inputs/Z.jpg" density_img = io.imread(input_path, True) lut_2d = sampler.generate_lut(density_img) visualizer = visualizer.GANDemoVisualizer( 'GAN 2D Example Visualization of {}'.format(input_path)) if PHRASE == "TRAIN": class SimpleMLP(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(SimpleMLP, self).__init__() self.map1 = nn.Linear(input_size, hidden_size) self.map2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = F.leaky_relu(self.map1(x), 0.1) return F.sigmoid(self.map2(x))
from keras_commons import sampler as sampler from keras_commons import visualize as visualizer import torch.nn.functional as F from torch import optim as tOpts from keras_callbacks import ProgressBarCallback as bar import imageio PHRASE = "TRAIN" DIMENSION = 2 cuda = False bs = 2000 iterations = 3000 z_dim = 2 input_path = "inputs/binary" image_paths = [os.sep.join([input_path, x]) for x in os.listdir(input_path)] density_imgs = [io.imread(x, True) for x in image_paths] luts_2d = [sampler.generate_lut(x) for x in density_imgs] # Sampling based on visual density, a too small batch size may result in failure with conditions pix_sums = [numpy.sum(x) for x in density_imgs] total_pix_sums = numpy.sum(pix_sums) c_indices = [0] + [ int(sum(pix_sums[:i + 1]) / total_pix_sums * bs + 0.5) for i in range(len(pix_sums) - 1) ] + [bs] c_dim = len(luts_2d) visualizer = visualizer.CGANDemoVisualizer( 'Conditional GAN 2D Example Visualization of {}'.format(input_path)) if PHRASE == "TRAIN": class SimpleMLP(nn.Module): def __init__(self, input_size, hidden_size, output_size):