コード例 #1
0
)

(options, args) = parser.parse_args()

# if not options.train_path:   # if filename is not given
# 	parser.error('Error: path to training data must be specified. Pass --path to command line')

# if options.parser == 'pascal_voc':
# 	from keras_frcnn.pascal_voc_parser import get_data
# elif options.parser == 'simple':
# 	from keras_frcnn.simple_parser import get_data
# else:
# 	raise ValueError("Command line option parser must be one of 'pascal_voc' or 'simple'")

# pass the settings from the command line, and persist them in the config object
C = config.Config()

# C.use_horizontal_flips = bool(options.horizontal_flips)
# C.use_vertical_flips = bool(options.vertical_flips)
# C.rot_90 = bool(options.rot_90)

#C.model_path = 'model_frcnn.hdf5'
C.model_path = options.output_weight_path
#C.num_rois = 32
C.num_rois = int(options.num_rois)

if options.network == 'vgg':
    C.network = 'vgg'
    from keras_frcnn import vgg as nn
elif options.network == 'resnet50':
    from keras_frcnn import resnet as nn
コード例 #2
0
ファイル: train_frcnn.py プロジェクト: yassinzak/Fishy
import random
import sys
import json
from keras_frcnn import config

sys.setrecursionlimit(40000)

C = config.Config()
C.num_rois = 6

C.use_vertical_flips = True
C.use_horizontal_flips = True
C.scale_augment = True
C.rot_90 = True

C2 = config.Config()
C2.num_rois = 6

#from keras_frcnn.pascal_voc_parser import get_data
from keras_frcnn.simple_parser import get_data

all_imgs, classes_count, class_mapping = get_data('C:/Fraps/im2txt.txt')

if 'bg' not in classes_count:
    classes_count['bg'] = 0
    class_mapping['bg'] = len(class_mapping)

with open('classes.json', 'w') as class_data_json:
    json.dump(class_mapping, class_data_json)

inv_map = {v: k for k, v in class_mapping.items()}
コード例 #3
0
def train_kitti():
    # config for data argument
    cfg = config.Config()

    cfg.use_horizontal_flips = True
    cfg.use_vertical_flips = True
    cfg.rot_90 = True
    cfg.num_rois = 32
    cfg.base_net_weights = os.path.join('./model/', nn.get_weight_path())

    # TODO: the only file should to be change for other data to train
    cfg.model_path = './model/kitti_frcnn_last.hdf5'
    cfg.simple_label_file = 'simple_label.txt'

    all_images, classes_count, class_mapping = get_data(cfg.simple_label_file)
    #print(len(all_images))

    if 'bg' not in classes_count:
        classes_count['bg'] = 0
        class_mapping['bg'] = len(class_mapping)

    cfg.class_mapping = class_mapping
    with open(cfg.config_save_file, 'wb') as config_f:
        pickle.dump(cfg, config_f)
        print(
            'Config has been written to {}, and can be loaded when testing to ensure correct results'
            .format(cfg.config_save_file))

    inv_map = {v: k for k, v in class_mapping.items()}

    print('Training images per class:')
    pprint.pprint(classes_count)
    print('Num classes (including bg) = {}'.format(len(classes_count)))
    random.shuffle(all_images)
    num_imgs = len(all_images)
    train_imgs = [s for s in all_images if s['imageset'] == 'trainval']
    #print(len(train_imgs))
    val_imgs = [s for s in all_images if s['imageset'] == 'test']

    print('Num train samples {}'.format(len(train_imgs)))
    print('Num val samples {}'.format(len(val_imgs)))

    data_gen_train = data_generators.get_anchor_gt(train_imgs,
                                                   classes_count,
                                                   cfg,
                                                   nn.get_img_output_length,
                                                   K.image_dim_ordering(),
                                                   mode='train')
    data_gen_val = data_generators.get_anchor_gt(val_imgs,
                                                 classes_count,
                                                 cfg,
                                                 nn.get_img_output_length,
                                                 K.image_dim_ordering(),
                                                 mode='val')

    if K.image_dim_ordering() == 'th':
        input_shape_img = (3, None, None)
    else:
        input_shape_img = (None, None, 3)

    img_input = Input(shape=input_shape_img)
    roi_input = Input(shape=(None, 4))

    # define the base network (resnet here, can be VGG, Inception, etc)
    shared_layers = nn.nn_base(img_input, trainable=True)

    # define the RPN, built on the base layers
    num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios)
    rpn = nn.rpn(shared_layers, num_anchors)

    classifier = nn.classifier(shared_layers,
                               roi_input,
                               cfg.num_rois,
                               nb_classes=len(classes_count),
                               trainable=True)

    model_rpn = Model(img_input, rpn[:2])
    model_classifier = Model([img_input, roi_input], classifier)

    # this is a model that holds both the RPN and the classifier, used to load/save weights for the models
    model_all = Model([img_input, roi_input], rpn[:2] + classifier)

    try:
        print('loading weights from {}'.format(cfg.base_net_weights))
        model_rpn.load_weights(cfg.model_path, by_name=True)
        model_classifier.load_weights(cfg.model_path, by_name=True)
    except Exception as e:
        print(e)
        print(
            'Could not load pretrained model weights. Weights can be found in the keras application folder '
            'https://github.com/fchollet/keras/tree/master/keras/applications')

    optimizer = Adam(lr=1e-5)
    optimizer_classifier = Adam(lr=1e-5)
    model_rpn.compile(optimizer=optimizer,
                      loss=[
                          losses_fn.rpn_loss_cls(num_anchors),
                          losses_fn.rpn_loss_regr(num_anchors)
                      ])
    model_classifier.compile(
        optimizer=optimizer_classifier,
        loss=[
            losses_fn.class_loss_cls,
            losses_fn.class_loss_regr(len(classes_count) - 1)
        ],
        metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'})
    model_all.compile(optimizer='sgd', loss='mae')

    epoch_length = 1000
    num_epochs = int(cfg.num_epochs)
    iter_num = 0

    losses = np.zeros((epoch_length, 5))
    rpn_accuracy_rpn_monitor = []
    rpn_accuracy_for_epoch = []
    start_time = time.time()

    best_loss = np.Inf

    class_mapping_inv = {v: k for k, v in class_mapping.items()}
    print('Starting training')

    vis = True

    for epoch_num in range(num_epochs):

        progbar = generic_utils.Progbar(epoch_length)
        print('Epoch {}/{}'.format(epoch_num + 1, num_epochs))

        while True:
            try:

                if len(rpn_accuracy_rpn_monitor
                       ) == epoch_length and cfg.verbose:
                    mean_overlapping_bboxes = float(
                        sum(rpn_accuracy_rpn_monitor)) / len(
                            rpn_accuracy_rpn_monitor)
                    rpn_accuracy_rpn_monitor = []
                    print(
                        'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'
                        .format(mean_overlapping_bboxes, epoch_length))
                    if mean_overlapping_bboxes == 0:
                        print(
                            'RPN is not producing bounding boxes that overlap'
                            ' the ground truth boxes. Check RPN settings or keep training.'
                        )

                X, Y, img_data = next(data_gen_train)

                loss_rpn = model_rpn.train_on_batch(X, Y)

                P_rpn = model_rpn.predict_on_batch(X)

                result = roi_helpers.rpn_to_roi(P_rpn[0],
                                                P_rpn[1],
                                                cfg,
                                                K.image_dim_ordering(),
                                                use_regr=True,
                                                overlap_thresh=0.6,
                                                max_boxes=300)
                # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format
                X2, Y1, Y2, IouS = roi_helpers.calc_iou(
                    result, img_data, cfg, class_mapping)

                if X2 is None:
                    rpn_accuracy_rpn_monitor.append(0)
                    rpn_accuracy_for_epoch.append(0)
                    continue

                neg_samples = np.where(Y1[0, :, -1] == 1)
                pos_samples = np.where(Y1[0, :, -1] == 0)

                if len(neg_samples) > 0:
                    neg_samples = neg_samples[0]
                else:
                    neg_samples = []

                if len(pos_samples) > 0:
                    pos_samples = pos_samples[0]
                else:
                    pos_samples = []

                rpn_accuracy_rpn_monitor.append(len(pos_samples))
                rpn_accuracy_for_epoch.append((len(pos_samples)))

                if cfg.num_rois > 1:
                    if len(pos_samples) < cfg.num_rois // 2:
                        selected_pos_samples = pos_samples.tolist()
                    else:
                        selected_pos_samples = np.random.choice(
                            pos_samples, cfg.num_rois // 2,
                            replace=False).tolist()
                    try:
                        selected_neg_samples = np.random.choice(
                            neg_samples,
                            cfg.num_rois - len(selected_pos_samples),
                            replace=False).tolist()
                    except:
                        selected_neg_samples = np.random.choice(
                            neg_samples,
                            cfg.num_rois - len(selected_pos_samples),
                            replace=True).tolist()

                    sel_samples = selected_pos_samples + selected_neg_samples
                else:
                    # in the extreme case where num_rois = 1, we pick a random pos or neg sample
                    selected_pos_samples = pos_samples.tolist()
                    selected_neg_samples = neg_samples.tolist()
                    if np.random.randint(0, 2):
                        sel_samples = random.choice(neg_samples)
                    else:
                        sel_samples = random.choice(pos_samples)

                loss_class = model_classifier.train_on_batch(
                    [X, X2[:, sel_samples, :]],
                    [Y1[:, sel_samples, :], Y2[:, sel_samples, :]])

                losses[iter_num, 0] = loss_rpn[1]
                losses[iter_num, 1] = loss_rpn[2]

                losses[iter_num, 2] = loss_class[1]
                losses[iter_num, 3] = loss_class[2]
                losses[iter_num, 4] = loss_class[3]

                iter_num += 1

                progbar.update(
                    iter_num,
                    [('rpn_cls', np.mean(losses[:iter_num, 0])),
                     ('rpn_regr', np.mean(losses[:iter_num, 1])),
                     ('detector_cls', np.mean(losses[:iter_num, 2])),
                     ('detector_regr', np.mean(losses[:iter_num, 3]))])

                if iter_num == epoch_length:
                    loss_rpn_cls = np.mean(losses[:, 0])
                    loss_rpn_regr = np.mean(losses[:, 1])
                    loss_class_cls = np.mean(losses[:, 2])
                    loss_class_regr = np.mean(losses[:, 3])
                    class_acc = np.mean(losses[:, 4])

                    mean_overlapping_bboxes = float(sum(
                        rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch)
                    rpn_accuracy_for_epoch = []

                    if cfg.verbose:
                        print(
                            'Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'
                            .format(mean_overlapping_bboxes))
                        print(
                            'Classifier accuracy for bounding boxes from RPN: {}'
                            .format(class_acc))
                        print('Loss RPN classifier: {}'.format(loss_rpn_cls))
                        print('Loss RPN regression: {}'.format(loss_rpn_regr))
                        print('Loss Detector classifier: {}'.format(
                            loss_class_cls))
                        print('Loss Detector regression: {}'.format(
                            loss_class_regr))
                        print('Elapsed time: {}'.format(time.time() -
                                                        start_time))

                    curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr
                    iter_num = 0
                    start_time = time.time()

                    if curr_loss < best_loss:
                        if cfg.verbose:
                            print(
                                'Total loss decreased from {} to {}, saving weights'
                                .format(best_loss, curr_loss))
                        best_loss = curr_loss
                        model_all.save_weights(cfg.model_path)

                    break

            except Exception as e:
                print('Exception: {}'.format(e))
                # save model
                model_all.save_weights(cfg.model_path)
                continue
    print('Training complete, exiting.')
コード例 #4
0
ファイル: test_fgnent_holyimg.py プロジェクト: touchylk/cac
    'belly': 4,
    'breast': 5,
    'tail': 6
}
bird_map_path = '/home/e813/dataset/CUBbird/CUB_200_2011/CUB_200_2011/c.pkl'
with open(bird_map_path, 'r') as f:
    bird_class_mapping = pickle.load(f)


#pprint.pprint(bird_class_mapping)
def read_prepare_input(img_path):
    img = cv2.imread(img_path)
    return img


cfg = config.Config()
sys.setrecursionlimit(40000)

if cfg.network == 'vgg':
    # cfg.network = 'vgg'
    from keras_frcnn import vgg as nn
    print('use vgg')
elif cfg.network == 'resnet50':
    from keras_frcnn import resnet as nn
    print('use resnet50')
else:
    print('Not a valid model')
    raise ValueError

if cfg.input_weight_path:  # 这里已经被赋值为cfg里的值
    cfg.base_net_weights = cfg.input_weight_path
コード例 #5
0
def train_fasterrcnn():
    # config for data argument
    cfg = config.Config()
    cfg.balanced_classes = False
    cfg.use_horizontal_flips = True
    cfg.use_vertical_flips = True
    cfg.rot_90 = True
    cfg.num_rois = 100 #50# 对于星图杯的光学遥感飞机检测,应该改为50+
    cfg.anchor_box_scales = [16,32,64,128,256]#[41,70,120,20,90]
    cfg.anchor_box_ratios = [[1,0.7],[1,1.4],[1,1],[1.4,1],[0.7,1]]#[[1,1.4],[1,0.84],[1,1.17],[1,0.64],[1,1]]
    cfg.rpn_stride = 8
    cfg.im_size = 512
    cfg.num_epochs = 100
    cfg.epoch_length = 150#1462

    cfg.base_net_weights = os.path.join('./model/', nn.get_weight_path())  

    # TODO: the only file should to be change for other data to train
    cfg.model_path = './model/kitti_frcnn_last.hdf5'
    cfg.simple_label_file = 'DOTA2018_OpticalAircraft_bboxes.txt'#'kitti_simple_label.txt'#'E:/Xingtubei/official_datas/OpticalAircraft/laptop_Chreoc_OpticalAircraft_bboxes.txt' # '/media/liuhuaqing/Elements/Xingtubei/official_datas/OpticalAircraft/Chreoc_OpticalAircraft_bboxes.txt'#'F:/Xingtubei/official_datas/OpticalAircraft/Chreoc_OpticalAircraft_bboxes.txt' # 'kitti_simple_label.txt'

    all_images, classes_count, class_mapping = get_data(cfg.simple_label_file)#读取数据集,cv2.imread()要求数据里不能有中文路径

    if 'bg' not in classes_count:#'bg'应该是代表背景
        classes_count['bg'] = 0 # =0表示训练数据中没有“背景”这一类别
        class_mapping['bg'] = len(class_mapping)

    cfg.class_mapping = class_mapping
    with open(cfg.config_save_file, 'wb') as config_f:
        pickle.dump(cfg, config_f)
        print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(
            cfg.config_save_file))

    inv_map = {v: k for k, v in class_mapping.items()}#class_mapping的逆向map

    print('Training images per class:')
    pprint.pprint(classes_count)
    print('Num classes (including bg) = {}'.format(len(classes_count)))
    random.shuffle(all_images)
    num_imgs = len(all_images)
    train_imgs = [s for s in all_images if s['imageset'] == 'trainval'] #训练集,列表形式,列表中的元素是字典
    val_imgs = [s for s in all_images if s['imageset'] == 'test'] #验证集,列表形式,列表中的元素是字典

    print('Num train samples {}'.format(len(train_imgs)))
    print('Num val samples {}'.format(len(val_imgs)))

    data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, cfg, nn.get_img_output_length,
                                                   K.image_dim_ordering(), mode='train')#数据扩增,然后生成frcnn所需的训练数据(如:图片、rpn的梯度等等)
    data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, cfg, nn.get_img_output_length,
                                                 K.image_dim_ordering(), mode='val')#数据扩增,然后生成frcnn所需的验证数据(如:图片、rpn的梯度等等)

    # 根据keras实际用的后端,定义相应的输入数据维度,因为两类后端的维度顺序不一样
    if K.image_dim_ordering() == 'th':
        input_shape_img = (3, None, None)#当后端是thaneo
    else:
        input_shape_img = (None,None,3)#(None, None, 3)#当后端是tensorflow

    img_input = Input(shape=input_shape_img) # 输入图片
    roi_input = Input(shape=(None, 4)) # 输入人工标注的roi坐标,4表示x1,y1,x2,y2

    # define the base network (resnet here, can be VGG, Inception, etc)
    shared_layer,shared_layers_stage3,shared_layers_stage4 = nn.nn_base(img_input, trainable=True)# shared_layers是frcnn网络底部那些共享的层,在这里是ResNet。由nn定义好

    # define the RPN, built on the base layers
    num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios)
    rpn_stage3 = nn.rpn(shared_layers_stage3, num_anchors)
    print(rpn_stage3[1].shape)
    rpn_stage4 = nn.rpn(shared_layers_stage4, num_anchors) # [x_class, x_regr, base_layers]
    print(rpn_stage4[1].shape)
    # x_class的shape是(?,sharelayer的w/2,sharelayer的h/2,scale数*ratio数),x_regr的shape是(?,sharelayer的w/2,sharelayer的h/2,4*scale数*ratio数)
    
    rpn = nn.rpn(shared_layer,num_anchors)
    print(rpn[1].shape)
    
    # 在这里合并两个rpn分支

    classifier = nn.classifier(shared_layer, roi_input, cfg.num_rois, nb_classes=len(classes_count), trainable=True)

    model_rpn = Model(inputs=img_input, outputs=rpn[:2])#rpn网络由keras_frcnn/resnet定义。rpn[:2]的前两个元素分别表示rpn网络的分类输出和回归输出
    model_classifier = Model(inputs=[img_input, roi_input], outputs=classifier)#Keras的函数式模型为Model,即广义的拥有输入和输出的模型

    # this is a model that holds both the RPN and the classifier, used to load/save weights for the models
    model_all = Model(inputs=[img_input, roi_input], outputs=rpn[:2] + classifier)#rpn[:2]+classifier的含义是??????

    try:
        # 尝试载入已训练网络权值
        print('loading weights from {}'.format(cfg.base_net_weights))
        model_rpn.load_weights(cfg.model_path, by_name=True)
        model_classifier.load_weights(cfg.model_path, by_name=True)
    except Exception as e:
        print(e)
        print('Could not load pretrained model weights. Weights can be found in the keras application folder '
              'https://github.com/fchollet/keras/tree/master/keras/applications')

    optimizer = Adam(lr=1e-5)# 定义一个Adam求解器,学习率lr
    optimizer_classifier = Adam(lr=1e-5)# 定义一个Adam求解器,学习率lr
    # num_anchors等于9
    model_rpn.compile(optimizer=optimizer,
                      loss=[losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors)])
    model_classifier.compile(optimizer=optimizer_classifier,
                             loss=[losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1)],
                             metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'})
    model_all.compile(optimizer='sgd', loss='mae') #mae表示绝对值均差

    epoch_length = cfg.epoch_length # epoch_length是一个周期的迭代次数(也等于训练数据量)。每迭代epoch_length次就检查一次是否要保存网络权值,然后重置iter_num = 0
    num_epochs = int(cfg.num_epochs)
    iter_num = 0 # 迭代次数的初值

    losses = np.zeros((epoch_length, 5)) # 初始化loss数组,记录每个周期的loss
    rpn_accuracy_rpn_monitor = []  # 初始化一个数组,记录rpn的训练过程中的精度变化
    rpn_accuracy_for_epoch = [] # 初始化一个数组,记录rpn的每个训练周期的的精度变化 
    start_time = time.time() # 开始训练的时间

    best_loss = 5.0 #2.1 #np.Inf # 训练以来最小的loss

    class_mapping_inv = {v: k for k, v in class_mapping.items()} # class_mapping_inv是一个字典,key是目标类别编号,value是类别名称
    print('Starting training')

    vis = True

    for epoch_num in range(num_epochs):

        progbar = generic_utils.Progbar(epoch_length) # 生成一个进度条对象
        print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) # 输出当前训练周期数/总周期数

        while True:# 什么时候才结束这个循环?答:第247行的break(每迭代epoch_length次)
            try:

                if len(rpn_accuracy_rpn_monitor) == epoch_length and cfg.verbose: # 每epoch_length次训练周期就在窗口显示一次RPN平均精度
                    mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor)
                    rpn_accuracy_rpn_monitor = []
                    print(
                        'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(
                            mean_overlapping_bboxes, epoch_length))
                    if mean_overlapping_bboxes == 0:
                        print('RPN is not producing bounding boxes that overlap'
                              ' the ground truth boxes. Check RPN settings or keep training.')
                
                # X是原图,如kitti尺寸是(1,600,1987,3)。
                # Y是label,是有两个元素的list,
                #   其中第一个元素是类别,具体:shape是(1,share_layer_h,share_layer_w,2*scale数*ratio数),前一个元素为1(0)则表示是(不是)正或负样本,后一个为1(0)则表示是(不是)正样本
                #   第二个元素是bbox,具体:shape是(1,share_layer_h,share_layer_w,8*scale数*ratio数),前四个元素表示是不是正样,后四个元素才是bbox#为什么来个repeat赋值给前面一半
                # img_data是字典,包含文件名、尺寸、人工标记的roi和类别等
                # 
                X, Y, img_data = next(data_gen_train)

                loss_rpn = model_rpn.train_on_batch(X, Y)#为什么Y的尺寸与P_rpn的尺寸不同?为什么loss_rpn的尺寸是3,含义是什么,在哪里定义的?

                P_rpn = model_rpn.predict_on_batch(X)#P_rpn的尺寸是(1, 124, 38, 9) (1, 124, 38, 36)

                result = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], cfg, K.image_dim_ordering(), use_regr=True,
                                                overlap_thresh=0.7,
                                                max_boxes=300) #result的尺寸是300*4
                # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format
                # X2的尺寸是100*4,Y1的尺寸是1*100*8(8=训练集中目标类别总数),IouS尺寸是100
                X2, Y1, Y2, IouS = roi_helpers.calc_iou(result, img_data, cfg, class_mapping)#Y2的尺寸是1*1*56,56=28*2,(28=4*7)前28是coords,后28是labels(是该类别则标1)

                if X2 is None:
                    rpn_accuracy_rpn_monitor.append(0)
                    rpn_accuracy_for_epoch.append(0)
                    continue

                neg_samples = np.where(Y1[0, :, -1] == 1)#Y1的尺寸是1*1*8表示分类预测结果,最后一个元素为1表示是背景
                pos_samples = np.where(Y1[0, :, -1] == 0)

                if len(neg_samples) > 0:
                    neg_samples = neg_samples[0]
                else:
                    neg_samples = []

                if len(pos_samples) > 0:
                    pos_samples = pos_samples[0]
                else:
                    pos_samples = []

                rpn_accuracy_rpn_monitor.append(len(pos_samples))
                rpn_accuracy_for_epoch.append((len(pos_samples)))

                if cfg.num_rois > 1:
                    if len(pos_samples) < cfg.num_rois // 2:
                        selected_pos_samples = pos_samples.tolist()
                    else:
                        selected_pos_samples = np.random.choice(pos_samples, cfg.num_rois // 2, replace=False).tolist()
                    try:
                        selected_neg_samples = np.random.choice(neg_samples, cfg.num_rois - len(selected_pos_samples),
                                                                replace=False).tolist()
                    except:
                        selected_neg_samples = np.random.choice(neg_samples, cfg.num_rois - len(selected_pos_samples),
                                                                replace=True).tolist()

                    sel_samples = selected_pos_samples + selected_neg_samples
                else:
                    # in the extreme case where num_rois = 1, we pick a random pos or neg sample
                    selected_pos_samples = pos_samples.tolist()
                    selected_neg_samples = neg_samples.tolist()
                    if np.random.randint(0, 2):
                        sel_samples = random.choice(neg_samples)
                    else:
                        sel_samples = random.choice(pos_samples)

                loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]],
                                                             [Y1[:, sel_samples, :], Y2[:, sel_samples, :]])#用rpn输出的roi输入给classifier

                losses[iter_num, 0] = loss_rpn[1]
                losses[iter_num, 1] = loss_rpn[2]

                losses[iter_num, 2] = loss_class[1]
                losses[iter_num, 3] = loss_class[2]
                losses[iter_num, 4] = loss_class[3]

                iter_num += 1

                progbar.update(iter_num,
                               [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])),
                                ('detector_cls', np.mean(losses[:iter_num, 2])),('detector_regr', np.mean(losses[:iter_num, 3]))])

                if iter_num == epoch_length:# 每迭代epoch_length次就检查一次是否要保存网络权值,然后重置iter_num = 0
                    loss_rpn_cls = np.mean(losses[:, 0])
                    loss_rpn_regr = np.mean(losses[:, 1])
                    loss_class_cls = np.mean(losses[:, 2])
                    loss_class_regr = np.mean(losses[:, 3])
                    class_acc = np.mean(losses[:, 4])

                    mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch)
                    rpn_accuracy_for_epoch = []

                    if cfg.verbose:
                        print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(
                            mean_overlapping_bboxes))
                        print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc))
                        print('Loss RPN classifier: {}'.format(loss_rpn_cls))
                        print('Loss RPN regression: {}'.format(loss_rpn_regr))
                        print('Loss Detector classifier: {}'.format(loss_class_cls))
                        print('Loss Detector regression: {}'.format(loss_class_regr))
                        print('Elapsed time: {}'.format(time.time() - start_time))

                    curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr
                    iter_num = 0
                    start_time = time.time()

                    if curr_loss < best_loss:
                        if cfg.verbose:
                            print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss))
                        best_loss = curr_loss
                        model_all.save_weights(cfg.model_path)

                    break

            except Exception as e:
                print('Exception: {}'.format(e))
                # save model
                model_all.save_weights(cfg.model_path)
                continue
    print('Training complete, exiting.')