コード例 #1
0
if K.image_dim_ordering() == 'th':
    input_shape_img = (3, None, None)
else:
    input_shape_img = (None, None, 3)

img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(None, 4))

alpha = 1
shared_layers = nn.nn_base(img_input, alpha=alpha, trainable=True)

# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
rpn = nn.rpn(shared_layers, num_anchors)

classifier = nn.classifier(shared_layers, roi_input, C.num_rois, nb_classes=len(classes_count), alpha=alpha, trainable=True)

model_rpn = Model(img_input, rpn[:2])
model_classifier = Model([img_input, roi_input], classifier)

# this is a model that holds both the RPN and the classifier, used to load/save weights for the models
model_all = Model([img_input, roi_input], rpn[:2] + classifier)

try:
    print('loading weights from {}'.format(C.base_net_weights))
    model_rpn.load_weights(C.base_net_weights, by_name=True)
    model_classifier.load_weights(C.base_net_weights, by_name=True)
except:
    print('Could not load pretrained model weights. Weights can be found in the keras application folder \
        https://github.com/fchollet/keras/tree/master/keras/applications')
コード例 #2
0
    else:
        # set the path to weights based on backend and model
        C.base_net_weights = C.model_path

    img_input = Input(shape=input_shape_img)
    roi_input = Input(shape=(C.num_rois, 4))
    feature_map_input = Input(shape=input_shape_features)

    shared_layers = nn.nn_base(img_input, alpha, trainable=True)

    # define the RPN, built on the base layers
    num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
    rpn_layers = nn.rpn(shared_layers, num_anchors)
    classifier = nn.classifier(feature_map_input,
                               roi_input,
                               C.num_rois,
                               nb_classes=len(class_mapping),
                               alpha=alpha,
                               trainable=True)

    model_rpn = Model(img_input, rpn_layers)
    model_classifier_only = Model([feature_map_input, roi_input], classifier)

    model_classifier = Model([feature_map_input, roi_input], classifier)

    model_rpn.load_weights(C.base_net_weights, by_name=True)
    model_classifier.load_weights(C.base_net_weights, by_name=True)

    model_rpn.compile(optimizer='sgd', loss='mse')
    model_classifier.compile(optimizer='sgd', loss='mse')

    all_imgs, _, _ = get_data(options.test_path)
コード例 #3
0
def map_main(config_output_filename,
             img_path,
             weights_filename,
             num_rois=32,
             parser='pascal_voc'):
    if parser == 'pascal_voc':
        from keras_frcnn.pascal_voc_parser import get_data
    elif parser == 'simple':
        from keras_frcnn.simple_parser import get_data
    else:
        raise ValueError(
            "Command line option parser must be one of 'pascal_voc' or 'simple'"
        )

    with open(config_output_filename, 'r') as f_in:
        C = pickle.load(f_in)
    C.model_path = weights_filename
    class_mapping = C.class_mapping

    # turn off any data augmentation at test time
    C.use_horizontal_flips = False
    C.use_vertical_flips = False
    C.rot_90 = False

    if 'bg' not in class_mapping:
        class_mapping['bg'] = len(class_mapping)

    class_mapping = {v: k for k, v in class_mapping.iteritems()}
    print(class_mapping)
    class_to_color = {
        class_mapping[v]: np.random.randint(0, 255, 3)
        for v in class_mapping
    }
    C.num_rois = num_rois

    input_shape_img = (None, None, 3)
    input_shape_features = (None, None, 512)

    img_input = Input(shape=input_shape_img)
    roi_input = Input(shape=(C.num_rois, 4))
    feature_map_input = Input(shape=input_shape_features)

    # define the base network (resnet here, can be VGG, Inception, etc)
    shared_layers = nn.nn_base(img_input, trainable=True)

    # define the RPN, built on the base layers
    num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
    rpn_layers = nn.rpn(shared_layers, num_anchors)

    classifier = nn.classifier(feature_map_input,
                               roi_input,
                               C.num_rois,
                               nb_classes=len(class_mapping),
                               trainable=True)

    model_rpn = Model(img_input, rpn_layers)
    model_classifier_only = Model([feature_map_input, roi_input], classifier)

    model_classifier = Model([feature_map_input, roi_input], classifier)

    model_rpn.load_weights(C.model_path, by_name=True)
    model_classifier.load_weights(C.model_path, by_name=True)

    model_rpn.compile(optimizer='sgd', loss='mse')
    model_classifier.compile(optimizer='sgd', loss='mse')

    all_imgs, _, _ = get_data(img_path)
    test_imgs = [s for s in all_imgs if s['imageset'] == 'test']

    T = {}
    P = {}
    final_map = None
    for idx, img_data in enumerate(test_imgs):
        print('{}/{}'.format(idx, len(test_imgs)))
        st = time.time()
        filepath = img_data['filepath']

        img = cv2.imread(filepath)

        X, fx, fy = format_img(img, C)

        if K.image_dim_ordering() == 'tf':
            X = np.transpose(X, (0, 2, 3, 1))

        # get the feature maps and output from the RPN
        [Y1, Y2, F] = model_rpn.predict(X)

        R = roi_helpers.rpn_to_roi(Y1,
                                   Y2,
                                   C,
                                   K.image_dim_ordering(),
                                   overlap_thresh=0.7)

        # convert from (x1,y1,x2,y2) to (x,y,w,h)
        R[:, 2] -= R[:, 0]
        R[:, 3] -= R[:, 1]

        # apply the spatial pyramid pooling to the proposed regions
        bboxes = {}
        probs = {}