def test_conv2D_block_vanilla(): v = K.variable(np.ones([1, 16, 16, 1]), dtype=np.float32) out = conv2d_block(v, use_batch_norm=True) assert out.shape.as_list() == [1, 16, 16, 16]
def test_conv2d_block_unsupported_dropout(): v = K.variable(np.ones([1, 16, 16, 1]), dtype=np.float32) with pytest.raises(ValueError): out = conv2d_block(v, use_batch_norm=True, dropout_type="foo")
def test_conv2D_block_elu(): v = K.variable(np.ones([1, 32, 32, 1]), dtype=np.float32) out = conv2d_block(v, activation="elu") assert out.shape.as_list() == [1, 32, 32, 16]
def test_conv2D_block_standard_dropout(): v = K.variable(np.ones([1, 16, 16, 1]), dtype=np.float32) out = conv2d_block(v, use_batch_norm=True, dropout_type="standard") assert out.shape.as_list() == [1, 16, 16, 16]
def test_conv2D_block_filters(): v = K.variable(np.ones([1, 32, 32, 1]), dtype=np.float32) out = conv2d_block(v, use_batch_norm=False, filters=32) assert out.shape.as_list() == [1, 32, 32, 32]