コード例 #1
0
def rgb2all(img, freq_type):
    """Converts the RGB to a grey image and applies frequency decomposition.

    :param img: input image in RGB colour space.
    :param freq_type: type of a wavelength wavelet or fourier decomposition.
    :return: decomposed image with a size according to the decomposition type.
    """
    img = img.copy()
    img = normalisations.rgb2double(img)
    img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    return gry2all(img, freq_type)
コード例 #2
0
def rgb2opponency(image_rgb, opponent_space='lab'):
    image_rgb = normalisations.rgb2double(image_rgb)
    if opponent_space is None:
        # it's already in opponency
        image_opponent = image_rgb
    elif opponent_space == 'lab':
        image_opponent = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2LAB)
    elif opponent_space == 'dkl':
        image_opponent = rgb012dkl(image_rgb)
    else:
        sys.exit('Not supported colour space %s' % opponent_space)
    return image_opponent
コード例 #3
0
def gry2all(img, freq_type):
    """Converts applies frequency decomposition to a grey image.

    :param img: input grey-scale image.
    :param freq_type: type of a wavelength wavelet or fourier decomposition.
    :return: decomposed image with a size according to the decomposition type.
    """
    img = img.copy()
    img = normalisations.rgb2double(img)
    if freq_type in SUPPORTED_WAVELETS:
        ll, (lh, hl, hh) = pywt.dwt2(img, freq_type)
        # NOTE: we convert them to a range of 0 to 1
        img = np.zeros((*ll.shape, 4))
        img[:, :, 0] = ll
        img[:, :, 1] = (lh + 1)
        img[:, :, 2] = (hl + 1)
        img[:, :, 3] = (hh + 1)
        img /= 2
    else:
        sys.exit('frequency_domain.gry2all does not support %s.' % freq_type)
    return img
コード例 #4
0
def rgb2all(img, dest_space):
    """Converting an RGB to image to the specified destination colour space.

    :param img: the input image in RGB colour space,
    :param dest_space: the destination colour space.
    :return: an img of the same spatial size with three dimensions.
    """
    img = img.copy()
    img = normalisations.rgb2double(img)
    if 'rgb' in dest_space:
        if dest_space == 'rgb-r':
            img = img[:, :, 0]
        elif dest_space == 'rgb-g':
            img = img[:, :, 1]
        elif dest_space == 'rgb-b':
            img = img[:, :, 2]
    elif dest_space == 'lab':
        # TODO: this is really not nice to go back and forth
        img = (img * 255).astype('uint8')
        img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
        img = img.astype('float') / 255
    elif dest_space == 'dkl':
        img = rgb2dkl01(img)
    elif dest_space == 'hsv':
        img = rgb2hsv01(img)
    elif dest_space == 'lms':
        img = rgb2lms01(img)
    elif dest_space == 'yog':
        img = rgb2yog01(img)
    elif dest_space == 'gry':
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    else:
        sys.exit('colour_spaces.rgb2all does not support %s.' % dest_space)
    # all matrices are of three dimensions
    if len(img.shape) == 2:
        img = np.repeat(img[:, :, np.newaxis], 1, axis=2)
    return img
コード例 #5
0
def rgb2lms(x):
    return rgb012lms(normalisations.rgb2double(x))
コード例 #6
0
def rgb2hsv01(x):
    x = x.copy()
    x = normalisations.rgb2double(x)
    x = np.float32(cv2.cvtColor(x.astype('float32'), cv2.COLOR_RGB2HSV))
    x[:, :, 0] /= 360
    return x
コード例 #7
0
def rgb2yog(x):
    return rgb012yog(normalisations.rgb2double(x))
コード例 #8
0
def rgb2dkl(x):
    return rgb012dkl(normalisations.rgb2double(x))
コード例 #9
0
def rgb2xyz(x):
    return rgb012xyz(normalisations.rgb2double(x))
コード例 #10
0
def report_vector_influence(img_org, img_full, img_lesion):
    img_org = normalisations.rgb2double(img_org)
    img_org_op = cv2.cvtColor(img_org, cv2.COLOR_RGB2LAB)
    img_org_hsv = cv2.cvtColor(img_org, cv2.COLOR_RGB2HSV)
    img_full = normalisations.rgb2double(img_full)
    img_full_op = cv2.cvtColor(img_full, cv2.COLOR_RGB2LAB)
    img_full_hsv = cv2.cvtColor(img_full, cv2.COLOR_RGB2HSV)
    img_lesion = normalisations.rgb2double(img_lesion)
    img_lesion_op = cv2.cvtColor(img_lesion, cv2.COLOR_RGB2LAB)
    img_lesion_hsv = cv2.cvtColor(img_lesion, cv2.COLOR_RGB2HSV)

    img_diff = img_full - img_lesion
    img_diff_op = img_full_op - img_lesion_op
    img_diff_hsv = img_full_hsv - img_lesion_hsv
    img_diff_hsv[:, :, 0] = angular_diff(img_full_hsv[:, :, 0],
                                         img_lesion_hsv[:, :, 0])

    white_pixs = img_org_op[:, :, 0] > 75
    black_pixs = img_org_op[:, :, 0] < 25
    red_pixs = img_org_op[:, :, 1] > 0
    green_pixs = img_org_op[:, :, 1] < 0
    yellow_pixs = img_org_op[:, :, 2] > 0
    blue_pixs = img_org_op[:, :, 2] < 0
    satuated_pixs = img_org_hsv[:, :, 1] > 0.75
    achromatic_pixs = img_org_hsv[:, :, 1] < 0.25

    report = dict()
    report['num_pixels'] = {
        'white_pixs': white_pixs.sum(),
        'black_pixs': black_pixs.sum(),
        'red_pixs': red_pixs.sum(),
        'green_pixs': green_pixs.sum(),
        'yellow_pixs': yellow_pixs.sum(),
        'blue_pixs': blue_pixs.sum(),
        'satuated_pixs': satuated_pixs.sum(),
        'achromatic_pixs': achromatic_pixs.sum()
    }
    report['diff_rgb'] = img_diff.mean(axis=(0, 1))
    report['hist_rgb_full'] = [
        hist(img_full[:, :, 0], 10, [0, 1]),
        hist(img_full[:, :, 1], 10, [0, 1]),
        hist(img_full[:, :, 2], 10, [0, 1])
    ]
    report['hist_rgb_lesion'] = [
        hist(img_lesion[:, :, 0], 10, [0, 1]),
        hist(img_lesion[:, :, 1], 10, [0, 1]),
        hist(img_lesion[:, :, 2], 10, [0, 1])
    ]

    ab_rng = [
        -127, -40, -30, -20, -10, 0, 10, 20, 30, 40, 128
    ]
    report['diff_op'] = img_diff_op.mean(axis=(0, 1))
    report['hist_op_full'] = [
        hist(img_full_op[:, :, 0], 10, [0, 100]),
        hist(img_full_op[:, :, 1], ab_rng, [-127, 128]),
        hist(img_full_op[:, :, 2], ab_rng, [-127, 128])
    ]
    report['hist_op_lesion'] = [
        hist(img_lesion_op[:, :, 0], 10, [0, 100]),
        hist(img_lesion_op[:, :, 1], ab_rng, [-127, 128]),
        hist(img_lesion_op[:, :, 2], ab_rng, [-127, 128])
    ]
    report['white_pixs_op'] = img_diff_op[white_pixs].mean(axis=(0))
    report['black_pixs_op'] = img_diff_op[black_pixs].mean(axis=(0))
    report['red_pixs_op'] = img_diff_op[red_pixs].mean(axis=(0))
    report['green_pixs_op'] = img_diff_op[green_pixs].mean(axis=(0))
    report['yellow_pixs_op'] = img_diff_op[yellow_pixs].mean(axis=(0))
    report['blue_pixs_op'] = img_diff_op[blue_pixs].mean(axis=(0))
    report['saturated_pixs_op'] = img_diff_op[satuated_pixs].mean(axis=(0))
    report['achromatic_pixs_op'] = img_diff_op[achromatic_pixs].mean(axis=(0))

    report['diff_hsv'] = img_diff_hsv.mean(axis=(0, 1))
    report['hist_hsv_full'] = [
        hist(img_full_hsv[:, :, 0], 12, [0, 360]),
        hist(img_full_hsv[:, :, 1], 10, [0, 1]),
        hist(img_full_hsv[:, :, 2], 10, [0, 1])
    ]
    report['hist_hsv_lesion'] = [
        hist(img_lesion_hsv[:, :, 0], 12, [0, 360]),
        hist(img_lesion_hsv[:, :, 1], 10, [0, 1]),
        hist(img_lesion_hsv[:, :, 2], 10, [0, 1])
    ]
    report['white_pixs_hsv'] = img_diff_hsv[white_pixs].mean(axis=(0))
    report['black_pixs_hsv'] = img_diff_hsv[black_pixs].mean(axis=(0))
    report['red_pixs_hsv'] = img_diff_hsv[red_pixs].mean(axis=(0))
    report['green_pixs_hsv'] = img_diff_hsv[green_pixs].mean(axis=(0))
    report['yellow_pixs_hsv'] = img_diff_hsv[yellow_pixs].mean(axis=(0))
    report['blue_pixs_hsv'] = img_diff_hsv[blue_pixs].mean(axis=(0))
    report['saturated_pixs_hsv'] = img_diff_hsv[satuated_pixs].mean(axis=(0))
    report['achromatic_pixs_hsv'] = img_diff_hsv[achromatic_pixs].mean(axis=(0))
    return report