コード例 #1
0
ファイル: unet.py プロジェクト: sami-ets/DeepNormalize
class UNetTrainer(Trainer):

    def __init__(self, training_config, model_trainers: List[ModelTrainer],
                 train_data_loader: DataLoader, valid_data_loader: DataLoader, test_data_loader: DataLoader,
                 reconstruction_datasets: List[Dataset],
                 input_reconstructor: ImageReconstructor,
                 segmentation_reconstructor: ImageReconstructor,
                 augmented_input_reconstructor: ImageReconstructor,
                 gt_reconstructor: ImageReconstructor,
                 run_config: RunConfiguration,
                 dataset_config: dict, save_folder: str):
        super(UNetTrainer, self).__init__("UNetTrainer", train_data_loader, valid_data_loader, test_data_loader,
                                          model_trainers, run_config)

        self._training_config = training_config
        self._run_config = run_config
        self._dataset_configs = dataset_config
        self._slicer = ImageSlicer()
        self._seg_slicer = SegmentationSlicer()
        self._label_mapper = LabelMapper()
        self._reconstruction_datasets = reconstruction_datasets
        self._input_reconstructor = input_reconstructor
        self._gt_reconstructor = gt_reconstructor
        self._segmentation_reconstructor = segmentation_reconstructor
        self._augmented_input_reconstructor = augmented_input_reconstructor
        self._num_datasets = len(list(dataset_config.keys()))
        self._class_hausdorff_distance_gauge = AverageGauge()
        self._mean_hausdorff_distance_gauge = AverageGauge()
        self._per_dataset_hausdorff_distance_gauge = AverageGauge()
        self._iSEG_dice_gauge = AverageGauge()
        self._MRBrainS_dice_gauge = AverageGauge()
        self._ABIDE_dice_gauge = AverageGauge()
        self._iSEG_hausdorff_gauge = AverageGauge()
        self._MRBrainS_hausdorff_gauge = AverageGauge()
        self._ABIDE_hausdorff_gauge = AverageGauge()
        self._valid_dice_gauge = AverageGauge()
        self._class_dice_gauge_on_patches = AverageGauge()
        self._class_dice_gauge_on_reconstructed_images = AverageGauge()
        self._class_dice_gauge_on_reconstructed_iseg_images = AverageGauge()
        self._class_dice_gauge_on_reconstructed_mrbrains_images = AverageGauge()
        self._class_dice_gauge_on_reconstructed_abide_images = AverageGauge()
        self._hausdorff_distance_gauge_on_reconstructed_iseg_images = AverageGauge()
        self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images = AverageGauge()
        self._hausdorff_distance_gauge_on_reconstructed_abide_images = AverageGauge()
        self._general_confusion_matrix_gauge = ConfusionMatrix(num_classes=4)
        self._iSEG_confusion_matrix_gauge = ConfusionMatrix(num_classes=4)
        self._MRBrainS_confusion_matrix_gauge = ConfusionMatrix(num_classes=4)
        self._ABIDE_confusion_matrix_gauge = ConfusionMatrix(num_classes=4)
        self._previous_mean_dice = 0.0
        self._previous_per_dataset_table = ""
        self._start_time = time.time()
        self._sampler = Sampler(1.0)
        self._save_folder = save_folder
        self._is_sliced = True if isinstance(self._reconstruction_datasets[0], SliceDataset) else False
        print("Total number of parameters: {}".format(sum(p.numel() for p in self._model_trainers[0].parameters())))

    def _train_s(self, S: ModelTrainer, inputs, target, backward=True):
        S.zero_grad()

        target_ohe = to_onehot(torch.squeeze(target, dim=1).long(), num_classes=4)
        target = torch.squeeze(target, dim=1).long()

        seg_pred = torch.nn.functional.softmax(S.forward(inputs), dim=1)

        loss_S = S.compute_loss("DiceLoss", seg_pred, target_ohe)
        S.update_train_loss("DiceLoss", loss_S.mean())

        metrics = S.compute_metrics(seg_pred, target)
        metrics["Dice"] = metrics["Dice"].mean()
        metrics["IoU"] = metrics["IoU"].mean()
        S.update_train_metrics(metrics)

        if backward:
            loss_S.mean().backward()
            S.step()

        return seg_pred, loss_S

    def _valid_s(self, S: ModelTrainer, inputs, target):
        target_ohe = to_onehot(torch.squeeze(target, dim=1).long(), num_classes=4)
        target = torch.squeeze(target, dim=1).long()

        seg_pred = torch.nn.functional.softmax(S.forward(inputs), dim=1)

        loss_S = S.compute_loss("DiceLoss", seg_pred, target_ohe)
        S.update_valid_loss("DiceLoss", loss_S.mean())

        metrics = S.compute_metrics(seg_pred, target)
        metrics["Dice"] = metrics["Dice"].mean()
        metrics["IoU"] = metrics["IoU"].mean()
        S.update_valid_metrics(metrics)

        return seg_pred, loss_S

    def _test_s(self, S: ModelTrainer, inputs, target, metric_gauge: AverageGauge):
        target_ohe = to_onehot(torch.squeeze(target, dim=1).long(), num_classes=4)
        target = torch.squeeze(target, dim=1).long()

        seg_pred = torch.nn.functional.softmax(S.forward(inputs), dim=1)

        loss_S = S.compute_loss("DiceLoss", seg_pred, target_ohe)
        S.update_test_loss("DiceLoss", loss_S.mean())

        metrics = S.compute_metrics(seg_pred, target)
        metric_gauge.update(np.array(metrics["Dice"]))
        metrics["Dice"] = metrics["Dice"].mean()
        metrics["IoU"] = metrics["IoU"].mean()
        S.update_test_metrics(metrics)

        return seg_pred, loss_S

    def train_step(self, inputs, target):
        seg_pred, _ = self._train_s(self._model_trainers[0], inputs[AUGMENTED_INPUTS],
                                    target[IMAGE_TARGET])

        if self.current_train_step % 500 == 0:
            self._update_image_plots(self.phase, inputs[AUGMENTED_INPUTS].cpu().detach(),
                                     seg_pred.cpu().detach(),
                                     target[IMAGE_TARGET].cpu().detach(),
                                     target[DATASET_ID].cpu().detach())

    def validate_step(self, inputs, target):
        seg_pred, _ = self._valid_s(self._model_trainers[0], inputs[AUGMENTED_INPUTS],
                                    target[IMAGE_TARGET])

        if self.current_valid_step % 100 == 0:
            self._update_image_plots(self.phase, inputs[AUGMENTED_INPUTS].cpu().detach(),
                                     seg_pred.cpu().detach(),
                                     target[IMAGE_TARGET].cpu().detach(),
                                     target[DATASET_ID].cpu().detach())

    def test_step(self, inputs, target):
        inputs, target = self._sampler(inputs, target)
        target = target[AUGMENTED_TARGETS]

        seg_pred, _ = self._test_s(self._model_trainers[0], inputs[AUGMENTED_INPUTS], target[IMAGE_TARGET],
                                   self._class_dice_gauge_on_patches)

        if self.current_test_step % 100 == 0:
            self._update_histograms(inputs[AUGMENTED_INPUTS], target)
            self._update_image_plots(self.phase, inputs[AUGMENTED_INPUTS].cpu().detach(),
                                     seg_pred.cpu().detach(),
                                     target[IMAGE_TARGET].cpu().detach(),
                                     target[DATASET_ID].cpu().detach())

        if seg_pred[torch.where(target[DATASET_ID] == ISEG_ID)].shape[0] != 0:
            self._iSEG_dice_gauge.update(np.array(self._model_trainers[0].compute_metrics(
                torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == ISEG_ID)], dim=1),
                torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == ISEG_ID)],
                              dim=1).long())["Dice"].numpy()))

            self._iSEG_hausdorff_gauge.update(mean_hausdorff_distance(
                to_onehot(
                    torch.argmax(
                        torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == ISEG_ID)], dim=1),
                        dim=1), num_classes=4),
                to_onehot(
                    torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == ISEG_ID)], dim=1).long(),
                    num_classes=4))[-3:])

            self._iSEG_confusion_matrix_gauge.update((
                to_onehot(
                    torch.argmax(
                        torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == ISEG_ID)], dim=1),
                        dim=1, keepdim=False),
                    num_classes=4),
                torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == ISEG_ID)].long(), dim=1)))

        else:
            self._iSEG_dice_gauge.update(np.zeros((3,)))
            self._iSEG_hausdorff_gauge.update(np.zeros((3,)))

        if seg_pred[torch.where(target[DATASET_ID] == MRBRAINS_ID)].shape[0] != 0:
            self._MRBrainS_dice_gauge.update(np.array(self._model_trainers[0].compute_metrics(
                torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == MRBRAINS_ID)], dim=1),
                torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == MRBRAINS_ID)],
                              dim=1).long())["Dice"].numpy()))

            self._MRBrainS_hausdorff_gauge.update(mean_hausdorff_distance(
                to_onehot(
                    torch.argmax(
                        torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == MRBRAINS_ID)],
                                                    dim=1),
                        dim=1), num_classes=4),
                to_onehot(
                    torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == MRBRAINS_ID)],
                                  dim=1).long(),
                    num_classes=4))[-3:])

            self._MRBrainS_confusion_matrix_gauge.update((
                to_onehot(
                    torch.argmax(
                        torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == MRBRAINS_ID)],
                                                    dim=1),
                        dim=1, keepdim=False),
                    num_classes=4),
                torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == MRBRAINS_ID)].long(), dim=1)))

        else:
            self._MRBrainS_dice_gauge.update(np.zeros((3,)))
            self._MRBrainS_hausdorff_gauge.update(np.zeros((3,)))

        if seg_pred[torch.where(target[DATASET_ID] == ABIDE_ID)].shape[0] != 0:
            self._ABIDE_dice_gauge.update(np.array(self._model_trainers[0].compute_metrics(
                torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == ABIDE_ID)], dim=1),
                torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == ABIDE_ID)],
                              dim=1).long())["Dice"].numpy()))

            self._ABIDE_hausdorff_gauge.update(mean_hausdorff_distance(
                to_onehot(
                    torch.argmax(
                        torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == ABIDE_ID)], dim=1),
                        dim=1), num_classes=4),
                to_onehot(
                    torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == ABIDE_ID)], dim=1).long(),
                    num_classes=4))[-3:])

            self._ABIDE_confusion_matrix_gauge.update((
                to_onehot(
                    torch.argmax(
                        torch.nn.functional.softmax(seg_pred[torch.where(target[DATASET_ID] == ABIDE_ID)], dim=1),
                        dim=1, keepdim=False),
                    num_classes=4),
                torch.squeeze(target[IMAGE_TARGET][torch.where(target[DATASET_ID] == ABIDE_ID)].long(), dim=1)))

        self._class_hausdorff_distance_gauge.update(
            mean_hausdorff_distance(
                to_onehot(torch.argmax(torch.nn.functional.softmax(seg_pred, dim=1), dim=1), num_classes=4),
                to_onehot(torch.squeeze(target[IMAGE_TARGET], dim=1).long(), num_classes=4))[-3:])

        self._general_confusion_matrix_gauge.update((
            to_onehot(torch.argmax(torch.nn.functional.softmax(seg_pred, dim=1), dim=1, keepdim=False),
                      num_classes=4),
            torch.squeeze(target[IMAGE_TARGET].long(), dim=1)))

    def scheduler_step(self):
        self._model_trainers[0].scheduler_step()

    def on_epoch_begin(self):
        self._class_hausdorff_distance_gauge.reset()
        self._mean_hausdorff_distance_gauge.reset()
        self._iSEG_dice_gauge.reset()
        self._MRBrainS_dice_gauge.reset()
        self._ABIDE_dice_gauge.reset()
        self._iSEG_hausdorff_gauge.reset()
        self._MRBrainS_hausdorff_gauge.reset()
        self._ABIDE_hausdorff_gauge.reset()
        self._class_dice_gauge_on_patches.reset()
        self._general_confusion_matrix_gauge.reset()
        self._iSEG_confusion_matrix_gauge.reset()
        self._MRBrainS_confusion_matrix_gauge.reset()
        self._ABIDE_confusion_matrix_gauge.reset()

    def on_test_epoch_end(self):
        if self.epoch % 10 == 0:
            self._per_dataset_hausdorff_distance_gauge.reset()
            self._class_dice_gauge_on_reconstructed_iseg_images.reset()
            self._class_dice_gauge_on_reconstructed_mrbrains_images.reset()
            self._class_dice_gauge_on_reconstructed_abide_images.reset()
            self._hausdorff_distance_gauge_on_reconstructed_iseg_images.reset()
            self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.reset()
            self._hausdorff_distance_gauge_on_reconstructed_abide_images.reset()

            img_input = self._input_reconstructor.reconstruct_from_patches_3d()
            img_gt = self._gt_reconstructor.reconstruct_from_patches_3d()
            img_seg = self._segmentation_reconstructor.reconstruct_from_patches_3d()

            save_rebuilt_image(self._current_epoch, self._save_folder, self._dataset_configs.keys(), img_input,
                               "Input")
            save_rebuilt_image(self._current_epoch, self._save_folder, self._dataset_configs.keys(), img_gt,
                               "Ground_Truth")
            save_rebuilt_image(self._current_epoch, self._save_folder, self._dataset_configs.keys(), img_seg,
                               "Segmented")

            if self._training_config.build_augmented_images:
                img_augmented_input = self._augmented_input_reconstructor.reconstruct_from_patches_3d()
                img_augmented_normalized = self._augmented_normalized_reconstructor.reconstruct_from_patches_3d()
                save_augmented_rebuilt_images(self._current_epoch, self._save_folder, self._dataset_configs.keys(),
                                              img_augmented_input, img_augmented_normalized)

            mean_mhd = []
            for dataset in self._dataset_configs.keys():
                self.custom_variables[
                    "Reconstructed Segmented {} Image".format(dataset)] = self._seg_slicer.get_colored_slice(
                    SliceType.AXIAL, np.expand_dims(img_seg[dataset], 0), 160).squeeze(0)
                self.custom_variables[
                    "Reconstructed Ground Truth {} Image".format(dataset)] = self._seg_slicer.get_colored_slice(
                    SliceType.AXIAL, np.expand_dims(img_gt[dataset], 0), 160).squeeze(0)
                self.custom_variables[
                    "Reconstructed Input {} Image".format(dataset)] = self._slicer.get_slice(
                    SliceType.AXIAL, np.expand_dims(img_input[dataset], 0), 160)

                if self._training_config.build_augmented_images:
                    self.custom_variables[
                        "Reconstructed Augmented Input {} Image".format(dataset)] = self._slicer.get_slice(
                        SliceType.AXIAL, np.expand_dims(np.expand_dims(img_augmented_input[dataset], 0), 0), 160)
                    self.custom_variables[
                        "Reconstructed Augmented {} After Normalization".format(
                            dataset)] = self._seg_slicer.get_colored_slice(
                        SliceType.AXIAL,
                        np.expand_dims(np.expand_dims(img_augmented_normalized[dataset], 0), 0), 160).squeeze(0)
                else:
                    self.custom_variables["Reconstructed Augmented Input {} Image".format(
                        dataset)] = np.zeros((224, 192))
                    self.custom_variables[
                        "Reconstructed Initial Noise {} Image".format(
                            dataset)] = np.zeros((224, 192))
                    self.custom_variables[
                        "Reconstructed Augmented {} After Normalization".format(
                            dataset)] = np.zeros((224, 192))

                mean_mhd.append(mean_hausdorff_distance(
                    to_onehot(torch.tensor(img_gt[dataset], dtype=torch.long), num_classes=4),
                    to_onehot(torch.tensor(img_seg[dataset], dtype=torch.long), num_classes=4))[-3:].mean())

                metric = self._model_trainers[0].compute_metrics(
                    to_onehot(torch.tensor(img_seg[dataset]).unsqueeze(0).long(), num_classes=4),
                    torch.tensor(img_gt[dataset]).unsqueeze(0).long())

                self._class_dice_gauge_on_reconstructed_images.update(np.array(metric["Dice"]))

            self._per_dataset_hausdorff_distance_gauge.update(np.array(mean_mhd))

            if "iSEG" in img_seg:
                metric = self._model_trainers[0].compute_metrics(
                    to_onehot(torch.tensor(img_seg["iSEG"]).unsqueeze(0).long(), num_classes=4),
                    torch.tensor(img_gt["iSEG"]).unsqueeze(0).long())
                self._class_dice_gauge_on_reconstructed_iseg_images.update(np.array(metric["Dice"]))
                self._hausdorff_distance_gauge_on_reconstructed_iseg_images.update(mean_hausdorff_distance(
                    to_onehot(torch.tensor(img_gt["iSEG"], dtype=torch.long), num_classes=4),
                    to_onehot(torch.tensor(img_seg["iSEG"], dtype=torch.long), num_classes=4))[-3:])
            else:
                self._class_dice_gauge_on_reconstructed_iseg_images.update(np.array([0.0, 0.0, 0.0]))
                self._hausdorff_distance_gauge_on_reconstructed_iseg_images.update(np.array([0.0, 0.0, 0.0]))
            if "MRBrainS" in img_seg:
                metric = self._model_trainers[0].compute_metrics(
                    to_onehot(torch.tensor(img_seg["MRBrainS"]).unsqueeze(0).long(), num_classes=4),
                    torch.tensor(img_gt["MRBrainS"]).unsqueeze(0).long())
                self._class_dice_gauge_on_reconstructed_mrbrains_images.update(np.array(metric["Dice"]))
                self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.update(mean_hausdorff_distance(
                    to_onehot(torch.tensor(img_gt["MRBrainS"], dtype=torch.long), num_classes=4),
                    to_onehot(torch.tensor(img_seg["MRBrainS"], dtype=torch.long), num_classes=4))[-3:])
            else:
                self._class_dice_gauge_on_reconstructed_mrbrains_images.update(np.array([0.0, 0.0, 0.0]))
                self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.update(np.array([0.0, 0.0, 0.0]))
            if "ABIDE" in img_seg:
                metric = self._model_trainers[0].compute_metrics(
                    to_onehot(torch.tensor(img_seg["ABIDE"]).unsqueeze(0).long(), num_classes=4),
                    torch.tensor(img_gt["ABIDE"]).unsqueeze(0).long())
                self._class_dice_gauge_on_reconstructed_abide_images.update(np.array(metric["Dice"]))
                self._hausdorff_distance_gauge_on_reconstructed_abide_images.update(mean_hausdorff_distance(
                    to_onehot(torch.tensor(img_gt["ABIDE"], dtype=torch.long), num_classes=4),
                    to_onehot(torch.tensor(img_seg["ABIDE"], dtype=torch.long), num_classes=4))[-3:])
            else:
                self._class_dice_gauge_on_reconstructed_abide_images.update(np.array([0.0, 0.0, 0.0]))
                self._hausdorff_distance_gauge_on_reconstructed_abide_images.update(np.array([0.0, 0.0, 0.0]))

        if "ABIDE" not in self._dataset_configs.keys():
            self.custom_variables["Reconstructed Segmented ABIDE Image"] = np.zeros((224, 192))
            self.custom_variables["Reconstructed Ground Truth ABIDE Image"] = np.zeros((224, 192))
            self.custom_variables["Reconstructed Input ABIDE Image"] = np.zeros((224, 192))
        if "iSEG" not in self._dataset_configs.keys():
            self.custom_variables["Reconstructed Segmented iSEG Image"] = np.zeros((224, 192))
            self.custom_variables["Reconstructed Ground Truth iSEG Image"] = np.zeros((224, 192))
            self.custom_variables["Reconstructed Input iSEG Image"] = np.zeros((224, 192))
        if "MRBrainS" not in self._dataset_configs.keys():
            self.custom_variables["Reconstructed Segmented MRBrainS Image"] = np.zeros((224, 192))
            self.custom_variables["Reconstructed Ground Truth MRBrainS Image"] = np.zeros((224, 192))
            self.custom_variables["Reconstructed Input MRBrainS Image"] = np.zeros((224, 192))

        self.custom_variables["Runtime"] = to_html_time(timedelta(seconds=time.time() - self._start_time))

        if self._general_confusion_matrix_gauge._num_examples != 0:
            self.custom_variables["Confusion Matrix"] = np.array(
                np.fliplr(self._general_confusion_matrix_gauge.compute().cpu().detach().numpy()))
        else:
            self.custom_variables["Confusion Matrix"] = np.zeros((4, 4))

        if self._iSEG_confusion_matrix_gauge._num_examples != 0:
            self.custom_variables["iSEG Confusion Matrix"] = np.array(
                np.fliplr(self._iSEG_confusion_matrix_gauge.compute().cpu().detach().numpy()))
        else:
            self.custom_variables["iSEG Confusion Matrix"] = np.zeros((4, 4))

        if self._MRBrainS_confusion_matrix_gauge._num_examples != 0:
            self.custom_variables["MRBrainS Confusion Matrix"] = np.array(
                np.fliplr(self._MRBrainS_confusion_matrix_gauge.compute().cpu().detach().numpy()))
        else:
            self.custom_variables["MRBrainS Confusion Matrix"] = np.zeros((4, 4))

        if self._ABIDE_confusion_matrix_gauge._num_examples != 0:
            self.custom_variables["ABIDE Confusion Matrix"] = np.array(
                np.fliplr(self._ABIDE_confusion_matrix_gauge.compute().cpu().detach().numpy()))
        else:
            self.custom_variables["ABIDE Confusion Matrix"] = np.zeros((4, 4))

        self.custom_variables["Metric Table"] = to_html(["CSF", "Grey Matter", "White Matter"],
                                                        ["DSC", "HD"],
                                                        [
                                                            self._class_dice_gauge_on_patches.compute() if self._class_dice_gauge_on_patches.has_been_updated() else np.array(
                                                                [0.0, 0.0, 0.0]),
                                                            self._class_hausdorff_distance_gauge.compute() if self._class_hausdorff_distance_gauge.has_been_updated() else np.array(
                                                                [0.0, 0.0, 0.0])
                                                        ])

        self.custom_variables[
            "Dice score per class per epoch"] = self._class_dice_gauge_on_patches.compute() if self._class_dice_gauge_on_patches.has_been_updated() else np.array(
            [0.0, 0.0, 0.0])
        self.custom_variables[
            "Dice score per class per epoch on reconstructed image"] = self._class_dice_gauge_on_reconstructed_images.compute() if self._class_dice_gauge_on_reconstructed_images.has_been_updated() else np.array(
            [0.0, 0.0, 0.0])
        self.custom_variables[
            "Dice score per class per epoch on reconstructed iSEG image"] = self._class_dice_gauge_on_reconstructed_iseg_images.compute() if self._class_dice_gauge_on_reconstructed_iseg_images.has_been_updated() else np.array(
            [0.0, 0.0, 0.0])
        self.custom_variables[
            "Dice score per class per epoch on reconstructed MRBrainS image"] = self._class_dice_gauge_on_reconstructed_mrbrains_images.compute() if self._class_dice_gauge_on_reconstructed_mrbrains_images.has_been_updated() else np.array(
            [0.0, 0.0, 0.0])
        self.custom_variables[
            "Dice score per class per epoch on reconstructed ABIDE image"] = self._class_dice_gauge_on_reconstructed_abide_images.compute() if self._class_dice_gauge_on_reconstructed_abide_images.has_been_updated() else np.array(
            [0.0, 0.0, 0.0])
        self.custom_variables[
            "Hausdorff Distance per class per epoch on reconstructed iSEG image"] = self._hausdorff_distance_gauge_on_reconstructed_iseg_images.compute() if self._hausdorff_distance_gauge_on_reconstructed_iseg_images.has_been_updated() else np.array(
            [0.0, 0.0, 0.0])
        self.custom_variables[
            "Hausdorff Distance per class per epoch on reconstructed MRBrainS image"] = self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.compute() if self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.has_been_updated() else np.array(
            [0.0, 0.0, 0.0])
        self.custom_variables[
            "Hausdorff Distance per class per epoch on reconstructed ABIDE image"] = self._hausdorff_distance_gauge_on_reconstructed_abide_images.compute() if self._hausdorff_distance_gauge_on_reconstructed_abide_images.has_been_updated() else np.array(
            [0.0, 0.0, 0.0])

        if self._valid_dice_gauge.compute() > self._previous_mean_dice:
            new_table = to_html_per_dataset(
                ["CSF", "Grey Matter", "White Matter"],
                ["DSC", "HD"],
                [
                    [
                        self._iSEG_dice_gauge.compute() if self._iSEG_dice_gauge.has_been_updated() else np.array(
                            [0.0, 0.0, 0.0]),
                        self._iSEG_hausdorff_gauge.compute() if self._iSEG_hausdorff_gauge.has_been_updated() else np.array(
                            [0.0, 0.0, 0.0])],
                    [
                        self._MRBrainS_dice_gauge.compute() if self._MRBrainS_dice_gauge.has_been_updated() else np.array(
                            [0.0, 0.0, 0.0]),
                        self._MRBrainS_hausdorff_gauge.compute() if self._MRBrainS_hausdorff_gauge.has_been_updated() else np.array(
                            [0.0, 0.0, 0.0])],
                    [
                        self._ABIDE_dice_gauge.compute() if self._ABIDE_dice_gauge.has_been_updated() else np.array(
                            [0.0, 0.0, 0.0]),
                        self._ABIDE_hausdorff_gauge.compute() if self._ABIDE_hausdorff_gauge.has_been_updated() else np.array(
                            [0.0, 0.0, 0.0])]],
                ["iSEG", "MRBrainS", "ABIDE"])

            self.custom_variables["Per-Dataset Metric Table"] = new_table
            self._previous_mean_dice = self._valid_dice_gauge.compute()
            self._previous_per_dataset_table = new_table
        else:
            self.custom_variables["Per-Dataset Metric Table"] = self._previous_per_dataset_table
        self._valid_dice_gauge.reset()

        self.custom_variables["Mean Hausdorff Distance"] = [
            self._class_hausdorff_distance_gauge.compute().mean() if self._class_hausdorff_distance_gauge.has_been_updated() else np.array(
                [0.0])]

        self.custom_variables[
            "Per Dataset Mean Hausdorff Distance"] = self._per_dataset_hausdorff_distance_gauge.compute()

    def _update_image_plots(self, phase, inputs, segmenter_predictions, target, dataset_ids):
        inputs = torch.nn.functional.interpolate(inputs, scale_factor=5, mode="trilinear",
                                                 align_corners=True).numpy()
        segmenter_predictions = torch.nn.functional.interpolate(
            torch.argmax(torch.nn.functional.softmax(segmenter_predictions, dim=1), dim=1, keepdim=True).float(),
            scale_factor=5, mode="nearest").numpy()

        target = torch.nn.functional.interpolate(target.float(), scale_factor=5, mode="nearest").numpy()

        self.custom_variables[
            "{} Input Batch Process {}".format(phase, self._run_config.local_rank)] = self._slicer.get_slice(
            SliceType.AXIAL, inputs, inputs.shape[2] // 2)
        self.custom_variables[
            "{} Segmented Batch Process {}".format(phase,
                                                   self._run_config.local_rank)] = self._seg_slicer.get_colored_slice(
            SliceType.AXIAL, segmenter_predictions, segmenter_predictions.shape[2] // 2)
        self.custom_variables[
            "{} Segmentation Ground Truth Batch Process {}".format(phase,
                                                                   self._run_config.local_rank)] = self._seg_slicer.get_colored_slice(
            SliceType.AXIAL, target, target.shape[2] // 2)
        self.custom_variables[
            "{} Label Map Batch Process {}".format(phase,
                                                   self._run_config.local_rank)] = self._label_mapper.get_label_map(
            dataset_ids)

    def _update_histograms(self, inputs, target):
        self.custom_variables["Input Intensity Histogram"] = flatten(inputs.cpu().detach())
        self.custom_variables["Background Input Intensity Histogram"] = inputs[
            torch.where(target[IMAGE_TARGET] == 0)].cpu().detach()
        self.custom_variables["CSF Input Intensity Histogram"] = inputs[
            torch.where(target[IMAGE_TARGET] == 1)].cpu().detach()
        self.custom_variables["GM Input Intensity Histogram"] = inputs[
            torch.where(target[IMAGE_TARGET] == 2)].cpu().detach()
        self.custom_variables["WM Input Intensity Histogram"] = inputs[
            torch.where(target[IMAGE_TARGET] == 3)].cpu().detach()
コード例 #2
0
class ABIDEPreprocessingPipeline(AbstractPreProcessingPipeline):
    """
    An ABIDE data pre-processing pipeline. Extract necessary tissues for brain segmentation among other transformations.
    """
    LOGGER = logging.getLogger("PreProcessingPipeline")
    PATCH_SIZE = (1, 32, 32, 32)
    STEP = (1, 4, 4, 4)

    def __init__(self, csv_path):
        """
        Pre-processing pipeline constructor.
        Args:
            root_dir: Root directory where all files are located.
        """
        self._csv_path = csv_path
        self._mean_gauge = AverageGauge()
        self._std_gauge = AverageGauge()
        self._dataset_mean = 0.0

    def run(self, prefix: str = ""):
        files = pandas.read_csv(self._csv_path)
        images_T1 = np.asarray(files["T1"])
        labels = np.asarray(files["labels"])

        files = np.stack((np.array(images_T1), np.array(labels)), axis=1)

        means = self._dispatch_jobs_in_pool(files, 8, self._find_average)

        self._dataset_mean = np.mean(means)

        std = self._dispatch_jobs_in_pool(files, 8, self._find_std)

        std = np.sqrt(np.mean(std))

        print("Dataset mean : {}".format(self._dataset_mean))
        print("Dataset std : {}".format(std))

    def _find_average(self, files):
        for file in files:
            self.LOGGER.info("Processing file {}".format(file[1]))
            label = self._to_numpy_array(file[1])
            self.LOGGER.info("Processing file {}".format(file[0]))
            t1 = self._to_numpy_array(file[0])
            patches = self._extract_patches(t1, label, self.PATCH_SIZE,
                                            self.STEP)
            patches = list(map(lambda patch: patch.slice, patches))
            for patch in patches:
                mean = np.mean(patch)
                self._mean_gauge.update(mean)

        return self._mean_gauge.compute()

    def _find_std(self, files):
        for file in files:
            self.LOGGER.info("Processing file {}".format(file[1]))
            label = self._to_numpy_array(file[1])
            self.LOGGER.info("Processing file {}".format(file[0]))
            t1 = self._to_numpy_array(file[0])
            patches = self._extract_patches(t1, label, self.PATCH_SIZE,
                                            self.STEP)
            patches = list(map(lambda patch: patch.slice, patches))
            for patch in patches:
                std = np.array(((patch - self._dataset_mean)**2).mean())
                self._std_gauge.update(std)

        return self._std_gauge.compute()

    def _do_job(self, files):
        std = np.sqrt(self._std_gauge.compute())

        print("Mean: {}".format(np.mean(self._mean_gauge.compute())))
        print("Std: {}".format(np.mean(std)))

    def _to_numpy_array(self, file):
        transform_ = transforms.Compose([ToNumpyArray()])

        return transform_(file)

    def _extract_patches(self, image, label, patch_size, step):
        transforms_ = transforms.Compose(
            [PadToPatchShape(patch_size=patch_size, step=step)])
        transformed_image = transforms_(image)
        transformed_label = transforms_(label)

        return ABIDEPreprocessingPipeline.get_filtered_patches(
            transformed_image, transformed_label, patch_size, step)
コード例 #3
0
class MultipleDatasetPipeline(AbstractPreProcessingPipeline):
    """
    An ABIDE data pre-processing pipeline. Extract necessary tissues for brain segmentation among other transformations.
    """
    LOGGER = logging.getLogger("PreProcessingPipeline")
    PATCH_SIZE = (1, 32, 32, 32)
    STEP = (1, 4, 4, 4)

    def __init__(self, root_dirs):
        """
        Pre-processing pipeline constructor.
        Args:
            root_dir: Root directory where all files are located.
        """
        self._root_dirs = root_dirs
        self._mean_gauge_iSEG = AverageGauge()
        self._mean_gauge_MRBrainS = AverageGauge()
        self._mean_gauge_ABIDE = AverageGauge()
        self._std_gauge_iSEG = AverageGauge()
        self._std_gauge_MRBrainS = AverageGauge()
        self._std_gauge_ABIDE = AverageGauge()
        self._dataset_mean_iSEG = 0.0
        self._dataset_mean_MRBrainS = 0.0
        self._dataset_mean_ABIDE = 0.0
        self._dataset_std_iSEG = 0.0
        self._dataset_std_MRBrainS = 0.0
        self._dataset_std_ABIDE = 0.0

    def run(self, prefix: str = ""):
        images_T1 = natural_sort(
            extract_file_paths(os.path.join(self._root_dirs["iSEG"], "T1")))
        labels = natural_sort(
            extract_file_paths(os.path.join(self._root_dirs["iSEG"], "label")))
        files = np.stack((np.array(images_T1), np.array(labels)), axis=1)

        self._dataset_mean_iSEG = np.mean(
            self._dispatch_jobs_in_pool(files, 5, self._get_mean_iseg))
        self._dataset_std_iSEG = np.mean(
            self._dispatch_jobs_in_pool(files, 5, self._get_std_iseg))

        files = list()
        for subject in sorted(
                os.listdir(os.path.join(self._root_dirs["MRBrainS"]))):
            files.append(
                extract_file_paths(
                    os.path.join(self._root_dirs["MRBrainS"], subject)))

        self._dataset_mean_MRBrainS = np.mean(
            self._dispatch_jobs_in_pool(files, 5, self._get_mean_mrbrains))
        self._dataset_std_MRBrainS = np.mean(
            self._dispatch_jobs_in_pool(files, 5, self._get_std_mrbrains))

        files = pandas.read_csv(self._root_dirs["ABIDE"])
        images_T1 = np.asarray(files["T1"])
        labels = np.asarray(files["labels"])
        files = np.stack((np.array(images_T1), np.array(labels)), axis=1)

        self._dataset_mean_ABIDE = np.mean(
            self._dispatch_jobs_in_pool(files, 8, self._get_mean_abide))
        self._dataset_std_ABIDE = np.mean(
            self._dispatch_jobs_in_pool(files, 8, self._get_std_abide))

        print("Triple Dataset mean: {}".format(
            np.mean([
                self._dataset_mean_iSEG, self._dataset_mean_MRBrainS,
                self._dataset_mean_ABIDE
            ])))
        print("Triple Dataset std: {}".format(
            np.sqrt(
                np.mean([
                    self._dataset_std_iSEG, self._dataset_std_MRBrainS,
                    self._dataset_std_ABIDE
                ]))))

        print("Dual Dataset mean: {}".format(
            np.mean([self._dataset_mean_iSEG, self._dataset_mean_MRBrainS])))
        print("Dual Dataset std: {}".format(
            np.sqrt(
                np.mean([self._dataset_std_iSEG,
                         self._dataset_std_MRBrainS]))))

    def _get_mean_iseg(self, files):
        for file in files:
            self.LOGGER.info("Processing file {}".format(file[1]))
            label = self._to_numpy_array(file[1])
            self.LOGGER.info("Processing file {}".format(file[0]))
            t1 = self._to_numpy_array(file[0])
            patches = self._extract_patches(t1, label, self.PATCH_SIZE,
                                            self.STEP)
            patches = list(map(lambda patch: patch.slice, patches))
            for patch in patches:
                mean = np.mean(patch)
                self._mean_gauge_iSEG.update(mean)

        return self._mean_gauge_iSEG.compute()

    def _get_std_iseg(self, files):
        for file in files:
            self.LOGGER.info("Processing file {}".format(file[1]))
            label = self._to_numpy_array(file[1])
            self.LOGGER.info("Processing file {}".format(file[0]))
            t1 = self._to_numpy_array(file[0])
            patches = self._extract_patches(t1, label, self.PATCH_SIZE,
                                            self.STEP)
            patches = list(map(lambda patch: patch.slice, patches))
            for patch in patches:
                std = np.array(((patch - self._dataset_mean_iSEG)**2).mean())
                self._std_gauge_iSEG.update(std)

        return self._std_gauge_iSEG.compute()

    def _get_mean_mrbrains(self, files):
        for file in files:
            self.LOGGER.info("Processing file {}".format(
                file[LABELSFORTESTING]))
            label_for_testing = MRBrainSPipeline.resample_to_template(
                file[LABELSFORTESTING], file[T1_1MM], interpolation="linear")
            label_for_testing = self._to_numpy_array(label_for_testing)
            label_for_testing = label_for_testing.transpose((3, 0, 1, 2))
            label_for_testing = np.rot90(label_for_testing, axes=(1, -2))

            self.LOGGER.info("Processing file {}".format(file[T1]))
            t1 = MRBrainSPipeline.resample_to_template(
                file[T1], file[T1_1MM], interpolation="continuous")
            t1 = self._to_numpy_array(t1)
            t1 = t1.transpose((3, 0, 1, 2))
            t1 = np.rot90(t1, axes=(1, -2))
            t1 = MRBrainSPipeline.apply_mask(t1, label_for_testing)
            patches = self._extract_patches(t1, label_for_testing,
                                            self.PATCH_SIZE, self.STEP)
            patches = list(map(lambda patch: patch.slice, patches))

            for patch in patches:
                mean = np.mean(patch)
                self._mean_gauge_MRBrainS.update(mean)

        return self._mean_gauge_MRBrainS.compute()

    def _get_std_mrbrains(self, files):
        for file in files:
            self.LOGGER.info("Processing file {}".format(
                file[LABELSFORTESTING]))
            label_for_testing = MRBrainSPipeline.resample_to_template(
                file[LABELSFORTESTING], file[T1_1MM], interpolation="linear")
            label_for_testing = self._to_numpy_array(label_for_testing)
            label_for_testing = label_for_testing.transpose((3, 0, 1, 2))
            label_for_testing = np.rot90(label_for_testing, axes=(1, -2))

            self.LOGGER.info("Processing file {}".format(file[T1]))
            t1 = MRBrainSPipeline.resample_to_template(
                file[T1], file[T1_1MM], interpolation="continuous")
            t1 = self._to_numpy_array(t1)
            t1 = t1.transpose((3, 0, 1, 2))
            t1 = np.rot90(t1, axes=(1, -2))
            t1 = MRBrainSPipeline.apply_mask(t1, label_for_testing)
            patches = self._extract_patches(t1, label_for_testing,
                                            self.PATCH_SIZE, self.STEP)
            patches = list(map(lambda patch: patch.slice, patches))

            for patch in patches:
                std = np.array(
                    ((patch - self._dataset_mean_MRBrainS)**2).mean())
                self._std_gauge_MRBrainS.update(std)

        return self._std_gauge_MRBrainS.compute()

    def _get_mean_abide(self, files):
        for file in files:
            self.LOGGER.info("Processing file {}".format(file[1]))
            label = self._to_numpy_array(file[1])
            self.LOGGER.info("Processing file {}".format(file[0]))
            t1 = self._to_numpy_array(file[0])
            patches = self._extract_patches(t1, label, self.PATCH_SIZE,
                                            self.STEP)
            patches = list(map(lambda patch: patch.slice, patches))
            for patch in patches:
                mean = np.mean(patch)
                self._mean_gauge_ABIDE.update(mean)

        return self._mean_gauge_ABIDE.compute()

    def _get_std_abide(self, files):
        for file in files:
            self.LOGGER.info("Processing file {}".format(file[1]))
            label = self._to_numpy_array(file[1])
            self.LOGGER.info("Processing file {}".format(file[0]))
            t1 = self._to_numpy_array(file[0])
            patches = self._extract_patches(t1, label, self.PATCH_SIZE,
                                            self.STEP)
            patches = list(map(lambda patch: patch.slice, patches))
            for patch in patches:
                std = np.array(((patch - self._dataset_mean_ABIDE)**2).mean())
                self._std_gauge_ABIDE.update(std)

        return self._std_gauge_ABIDE.compute()

    def _to_numpy_array(self, file):
        transform_ = transforms.Compose([ToNumpyArray()])

        return transform_(file)

    def _extract_patches(self, image, label, patch_size, step):
        transforms_ = transforms.Compose(
            [PadToPatchShape(patch_size=patch_size, step=step)])
        transformed_image = transforms_(image)
        transformed_label = transforms_(label)

        return MultipleDatasetPipeline.get_filtered_patches(
            transformed_image, transformed_label, patch_size, step)
コード例 #4
0
ファイル: dual_unet.py プロジェクト: sami-ets/DeepNormalize
class DualUNetTrainer(Trainer):
    def __init__(self, training_config, model_trainers: List[ModelTrainer],
                 train_data_loader: DataLoader, valid_data_loader: DataLoader,
                 test_data_loader: DataLoader,
                 reconstruction_datasets: List[Dataset],
                 normalize_reconstructors: list, input_reconstructors: list,
                 segmentation_reconstructors: list,
                 augmented_reconstructors: list, gt_reconstructors: list,
                 run_config: RunConfiguration, dataset_config: dict,
                 save_folder: str):
        super(DualUNetTrainer,
              self).__init__("DualUNetTrainer", train_data_loader,
                             valid_data_loader, test_data_loader,
                             model_trainers, run_config)
        self._training_config = training_config
        self._run_config = run_config
        self._dataset_configs = dataset_config
        self._patience_segmentation = training_config.patience_segmentation
        self._slicer = ImageSlicer()
        self._seg_slicer = SegmentationSlicer()
        self._label_mapper = LabelMapper()
        self._reconstruction_datasets = reconstruction_datasets
        self._normalize_reconstructors = normalize_reconstructors
        self._input_reconstructors = input_reconstructors
        self._gt_reconstructors = gt_reconstructors
        self._segmentation_reconstructors = segmentation_reconstructors
        self._augmented_reconstructors = augmented_reconstructors
        self._class_hausdorff_distance_gauge = AverageGauge()
        self._mean_hausdorff_distance_gauge = AverageGauge()
        self._per_dataset_hausdorff_distance_gauge = AverageGauge()
        self._iSEG_dice_gauge = AverageGauge()
        self._MRBrainS_dice_gauge = AverageGauge()
        self._ABIDE_dice_gauge = AverageGauge()
        self._iSEG_hausdorff_gauge = AverageGauge()
        self._MRBrainS_hausdorff_gauge = AverageGauge()
        self._ABIDE_hausdorff_gauge = AverageGauge()
        self._valid_dice_gauge = AverageGauge()
        self._class_dice_gauge_on_patches = AverageGauge()
        self._class_dice_gauge_on_reconstructed_images = AverageGauge()
        self._class_dice_gauge_on_reconstructed_iseg_images = AverageGauge()
        self._class_dice_gauge_on_reconstructed_mrbrains_images = AverageGauge(
        )
        self._class_dice_gauge_on_reconstructed_abide_images = AverageGauge()
        self._hausdorff_distance_gauge_on_reconstructed_iseg_images = AverageGauge(
        )
        self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images = AverageGauge(
        )
        self._hausdorff_distance_gauge_on_reconstructed_abide_images = AverageGauge(
        )
        self._js_div_inputs_gauge = AverageGauge()
        self._js_div_gen_gauge = AverageGauge()
        self._general_confusion_matrix_gauge = ConfusionMatrix(num_classes=4)
        self._iSEG_confusion_matrix_gauge = ConfusionMatrix(num_classes=4)
        self._MRBrainS_confusion_matrix_gauge = ConfusionMatrix(num_classes=4)
        self._ABIDE_confusion_matrix_gauge = ConfusionMatrix(num_classes=4)
        self._previous_mean_dice = 0.0
        self._previous_per_dataset_table = ""
        self._start_time = time.time()
        self._save_folder = save_folder
        self._sampler = Sampler(0.33)
        self._is_sliced = True if isinstance(self._reconstruction_datasets[0],
                                             SliceDataset) else False
        print("Total number of parameters: {}".format(
            sum(p.numel()
                for p in self._model_trainers[GENERATOR].parameters()) +
            sum(p.numel()
                for p in self._model_trainers[SEGMENTER].parameters())))
        pynvml.nvmlInit()

    def _train_g(self, G: ModelTrainer, real, backward=True):
        G.zero_grad()

        gen_pred = torch.nn.functional.sigmoid(G.forward(real))

        loss_G = G.compute_and_update_train_loss("MSELoss", gen_pred, real)

        metric = G.compute_metric("MeanSquaredError", gen_pred, real)
        G.update_train_metric("MeanSquaredError", metric / 32768)

        if backward:
            loss_G.backward()
            G.step()

        return gen_pred

    def _valid_g(self, G: ModelTrainer, real):
        gen_pred = torch.nn.functional.sigmoid(G.forward(real))

        G.compute_and_update_valid_loss("MSELoss", gen_pred, real)

        metric = G.compute_metric("MeanSquaredError", gen_pred, real)
        G.update_valid_metric("MeanSquaredError", metric / 32768)

        return gen_pred

    def _test_g(self, G: ModelTrainer, real):
        gen_pred = torch.nn.functional.sigmoid(G.forward(real))

        G.compute_and_update_test_loss("MSELoss", gen_pred, real)

        metric = G.compute_metric("MeanSquaredError", gen_pred, real)
        G.update_test_metric("MeanSquaredError", metric / 32768)

        return gen_pred

    def _train_s(self, S: ModelTrainer, inputs, target, backward=True):
        S.zero_grad()

        target_ohe = to_onehot(torch.squeeze(target, dim=1).long(),
                               num_classes=4)
        target = torch.squeeze(target, dim=1).long()

        seg_pred = torch.nn.functional.softmax(S.forward(inputs), dim=1)

        loss_S = S.compute_loss("DiceLoss", seg_pred, target_ohe)
        S.update_train_loss("DiceLoss", loss_S.mean())

        metrics = S.compute_metrics(seg_pred, target)
        metrics["Dice"] = metrics["Dice"].mean()
        metrics["IoU"] = metrics["IoU"].mean()
        S.update_train_metrics(metrics)

        if backward:
            loss_S.mean().backward()
            S.step()

        return seg_pred, loss_S

    def _valid_s(self, S: ModelTrainer, inputs, target):
        target_ohe = to_onehot(torch.squeeze(target, dim=1).long(),
                               num_classes=4)
        target = torch.squeeze(target, dim=1).long()

        seg_pred = torch.nn.functional.softmax(S.forward(inputs), dim=1)

        loss_S = S.compute_loss("DiceLoss", seg_pred, target_ohe)
        S.update_valid_loss("DiceLoss", loss_S.mean())

        metrics = S.compute_metrics(seg_pred, target)
        metrics["Dice"] = metrics["Dice"].mean()
        metrics["IoU"] = metrics["IoU"].mean()
        S.update_valid_metrics(metrics)

        return seg_pred, loss_S

    def _test_s(self, S: ModelTrainer, inputs, target,
                metric_gauge: AverageGauge):
        target_ohe = to_onehot(torch.squeeze(target, dim=1).long(),
                               num_classes=4)
        target = torch.squeeze(target, dim=1).long()

        seg_pred = torch.nn.functional.softmax(S.forward(inputs), dim=1)

        loss_S = S.compute_loss("DiceLoss", seg_pred, target_ohe)
        S.update_test_loss("DiceLoss", loss_S.mean())

        metrics = S.compute_metrics(seg_pred, target)
        metric_gauge.update(np.array(metrics["Dice"]))
        metrics["Dice"] = metrics["Dice"].mean()
        metrics["IoU"] = metrics["IoU"].mean()
        S.update_test_metrics(metrics)

        return seg_pred, loss_S

    def train_step(self, inputs, target):
        inputs, target = self._sampler(inputs, target)

        if self._should_activate_autoencoder():
            gen_pred = self._train_g(self._model_trainers[GENERATOR],
                                     inputs[NON_AUGMENTED_INPUTS])

            seg_pred, _ = self._train_s(
                self._model_trainers[SEGMENTER], inputs[NON_AUGMENTED_INPUTS],
                target[NON_AUGMENTED_TARGETS][IMAGE_TARGET])

            if self.current_train_step % 500 == 0:
                self._update_image_plots(
                    self.phase, inputs[NON_AUGMENTED_INPUTS].cpu().detach(),
                    gen_pred.cpu().detach(),
                    seg_pred.cpu().detach(),
                    target[NON_AUGMENTED_TARGETS][IMAGE_TARGET].cpu().detach(),
                    target[NON_AUGMENTED_TARGETS][DATASET_ID].cpu().detach())

        if self._should_activate_segmentation():
            gen_pred = self._train_g(self._model_trainers[GENERATOR],
                                     inputs[AUGMENTED_INPUTS],
                                     backward=False)

            seg_pred, loss_S = self._train_s(
                self._model_trainers[SEGMENTER],
                gen_pred,
                target[AUGMENTED_TARGETS][IMAGE_TARGET],
                backward=False)

            loss_S.mean().backward()

            self._model_trainers[SEGMENTER].step()
            self._model_trainers[GENERATOR].step()

            if self.current_train_step % 500 == 0:
                self._update_image_plots(
                    self.phase, inputs[AUGMENTED_INPUTS].cpu().detach(),
                    gen_pred.cpu().detach(),
                    seg_pred.cpu().detach(),
                    target[AUGMENTED_TARGETS][IMAGE_TARGET].cpu().detach(),
                    target[AUGMENTED_TARGETS][DATASET_ID].cpu().detach())

    def validate_step(self, inputs, target):
        if self._should_activate_autoencoder():
            gen_pred = self._valid_g(self._model_trainers[GENERATOR],
                                     inputs[NON_AUGMENTED_INPUTS])

            seg_pred, _ = self._valid_s(self._model_trainers[SEGMENTER],
                                        inputs[NON_AUGMENTED_INPUTS],
                                        target[IMAGE_TARGET])

        if self._should_activate_segmentation():
            gen_pred = self._valid_g(self._model_trainers[GENERATOR],
                                     inputs[AUGMENTED_INPUTS])

            seg_pred, _ = self._valid_s(self._model_trainers[SEGMENTER],
                                        gen_pred, target[IMAGE_TARGET])

        if self.current_valid_step % 100 == 0:
            self._update_image_plots(
                self.phase, inputs[NON_AUGMENTED_INPUTS].cpu().detach(),
                gen_pred.cpu().detach(),
                seg_pred.cpu().detach(), target[IMAGE_TARGET].cpu().detach(),
                target[DATASET_ID].cpu().detach())

    def test_step(self, inputs, target):
        if self._should_activate_autoencoder():
            gen_pred = self._test_g(self._model_trainers[GENERATOR],
                                    inputs[NON_AUGMENTED_INPUTS])

            seg_pred, _ = self._test_s(self._model_trainers[SEGMENTER],
                                       inputs[NON_AUGMENTED_INPUTS],
                                       target[IMAGE_TARGET],
                                       self._class_dice_gauge_on_patches)

        if self._should_activate_segmentation():
            gen_pred = self._test_g(self._model_trainers[GENERATOR],
                                    inputs[AUGMENTED_INPUTS])

            seg_pred, loss_S = self._test_s(self._model_trainers[SEGMENTER],
                                            gen_pred, target[IMAGE_TARGET],
                                            self._class_dice_gauge_on_patches)

            if seg_pred[torch.where(
                    target[DATASET_ID] == ISEG_ID)].shape[0] != 0:
                self._iSEG_dice_gauge.update(
                    np.array(self._model_trainers[SEGMENTER].compute_metrics(
                        torch.nn.functional.softmax(seg_pred[torch.where(
                            target[DATASET_ID] == ISEG_ID)],
                                                    dim=1),
                        torch.squeeze(target[IMAGE_TARGET][torch.where(
                            target[DATASET_ID] == ISEG_ID)],
                                      dim=1).long())["Dice"].numpy()))

                self._iSEG_hausdorff_gauge.update(
                    mean_hausdorff_distance(
                        to_onehot(torch.argmax(torch.nn.functional.softmax(
                            seg_pred[torch.where(
                                target[DATASET_ID] == ISEG_ID)],
                            dim=1),
                                               dim=1),
                                  num_classes=4),
                        to_onehot(torch.squeeze(
                            target[IMAGE_TARGET][torch.where(
                                target[DATASET_ID] == ISEG_ID)],
                            dim=1).long(),
                                  num_classes=4))[-3:])

                self._iSEG_confusion_matrix_gauge.update(
                    (to_onehot(torch.argmax(torch.nn.functional.softmax(
                        seg_pred[torch.where(target[DATASET_ID] == ISEG_ID)],
                        dim=1),
                                            dim=1,
                                            keepdim=False),
                               num_classes=4),
                     torch.squeeze(target[IMAGE_TARGET][torch.where(
                         target[DATASET_ID] == ISEG_ID)].long(),
                                   dim=1)))

            else:
                self._iSEG_dice_gauge.update(np.zeros((3, )))
                self._iSEG_hausdorff_gauge.update(np.zeros((3, )))

            if seg_pred[torch.where(
                    target[DATASET_ID] == MRBRAINS_ID)].shape[0] != 0:
                self._MRBrainS_dice_gauge.update(
                    np.array(self._model_trainers[SEGMENTER].compute_metrics(
                        torch.nn.functional.softmax(seg_pred[torch.where(
                            target[DATASET_ID] == MRBRAINS_ID)],
                                                    dim=1),
                        torch.squeeze(target[IMAGE_TARGET][torch.where(
                            target[DATASET_ID] == MRBRAINS_ID)],
                                      dim=1).long())["Dice"].numpy()))

                self._MRBrainS_hausdorff_gauge.update(
                    mean_hausdorff_distance(
                        to_onehot(torch.argmax(torch.nn.functional.softmax(
                            seg_pred[torch.where(
                                target[DATASET_ID] == MRBRAINS_ID)],
                            dim=1),
                                               dim=1),
                                  num_classes=4),
                        to_onehot(torch.squeeze(
                            target[IMAGE_TARGET][torch.where(
                                target[DATASET_ID] == MRBRAINS_ID)],
                            dim=1).long(),
                                  num_classes=4))[-3:])

                self._MRBrainS_confusion_matrix_gauge.update(
                    (to_onehot(torch.argmax(torch.nn.functional.softmax(
                        seg_pred[torch.where(
                            target[DATASET_ID] == MRBRAINS_ID)],
                        dim=1),
                                            dim=1,
                                            keepdim=False),
                               num_classes=4),
                     torch.squeeze(target[IMAGE_TARGET][torch.where(
                         target[DATASET_ID] == MRBRAINS_ID)].long(),
                                   dim=1)))
            else:
                self._MRBrainS_dice_gauge.update(np.zeros((3, )))
                self._MRBrainS_hausdorff_gauge.update(np.zeros((3, )))

            if seg_pred[torch.where(
                    target[DATASET_ID] == ABIDE_ID)].shape[0] != 0:
                self._ABIDE_dice_gauge.update(
                    np.array(self._model_trainers[SEGMENTER].compute_metrics(
                        torch.nn.functional.softmax(seg_pred[torch.where(
                            target[DATASET_ID] == ABIDE_ID)],
                                                    dim=1),
                        torch.squeeze(target[IMAGE_TARGET][torch.where(
                            target[DATASET_ID] == ABIDE_ID)],
                                      dim=1).long())["Dice"].numpy()))

                self._ABIDE_hausdorff_gauge.update(
                    mean_hausdorff_distance(
                        to_onehot(torch.argmax(torch.nn.functional.softmax(
                            seg_pred[torch.where(
                                target[DATASET_ID] == ABIDE_ID)],
                            dim=1),
                                               dim=1),
                                  num_classes=4),
                        to_onehot(torch.squeeze(
                            target[IMAGE_TARGET][torch.where(
                                target[DATASET_ID] == ABIDE_ID)],
                            dim=1).long(),
                                  num_classes=4))[-3:])

                self._ABIDE_confusion_matrix_gauge.update(
                    (to_onehot(torch.argmax(torch.nn.functional.softmax(
                        seg_pred[torch.where(target[DATASET_ID] == ABIDE_ID)],
                        dim=1),
                                            dim=1,
                                            keepdim=False),
                               num_classes=4),
                     torch.squeeze(target[IMAGE_TARGET][torch.where(
                         target[DATASET_ID] == ABIDE_ID)].long(),
                                   dim=1)))

            self._class_hausdorff_distance_gauge.update(
                mean_hausdorff_distance(
                    to_onehot(torch.argmax(torch.nn.functional.softmax(
                        seg_pred, dim=1),
                                           dim=1),
                              num_classes=4),
                    to_onehot(torch.squeeze(target[IMAGE_TARGET],
                                            dim=1).long(),
                              num_classes=4))[-3:])

            self._general_confusion_matrix_gauge.update(
                (to_onehot(torch.argmax(torch.nn.functional.softmax(seg_pred,
                                                                    dim=1),
                                        dim=1,
                                        keepdim=False),
                           num_classes=4),
                 torch.squeeze(target[IMAGE_TARGET].long(), dim=1)))

            inputs_reshaped = inputs[AUGMENTED_INPUTS].reshape(
                inputs[AUGMENTED_INPUTS].shape[0],
                inputs[AUGMENTED_INPUTS].shape[1] *
                inputs[AUGMENTED_INPUTS].shape[2] *
                inputs[AUGMENTED_INPUTS].shape[3] *
                inputs[AUGMENTED_INPUTS].shape[4])

            c, d, h, w = inputs[AUGMENTED_INPUTS].shape[1], inputs[AUGMENTED_INPUTS].shape[2], \
                         inputs[AUGMENTED_INPUTS].shape[3], inputs[AUGMENTED_INPUTS].shape[4]

            hist_inputs = torch.cat([
                torch.histc(inputs[AUGMENTED_INPUTS][i].view(1, c * d * h * w),
                            bins=256,
                            min=0,
                            max=1).unsqueeze(0)
                for i in range(inputs[0].shape[0])
            ]).unsqueeze(0)
            hist_inputs = hist_inputs / (c * d * h * w)
            hist_inputs = torch.nn.Softmax(dim=2)(hist_inputs)

            hist_gen = torch.cat([
                torch.histc(gen_pred[i].view(1, c * d * h * w),
                            bins=256,
                            min=0,
                            max=1).unsqueeze(0)
                for i in range(gen_pred.shape[0])
            ]).unsqueeze(0)
            hist_gen = hist_gen / (c * d * h * w)
            hist_gen = torch.nn.Softmax(dim=2)(hist_gen)

            self._js_div_inputs_gauge.update(js_div(hist_inputs).item())
            self._js_div_gen_gauge.update(js_div(hist_gen).item())

        if self.current_test_step % 100 == 0:
            self._update_histograms(inputs[NON_AUGMENTED_INPUTS], target,
                                    gen_pred)
            self._update_image_plots(
                self.phase, inputs[NON_AUGMENTED_INPUTS].cpu().detach(),
                gen_pred.cpu().detach(),
                seg_pred.cpu().detach(), target[IMAGE_TARGET].cpu().detach(),
                target[DATASET_ID].cpu().detach())

    def scheduler_step(self):
        self._model_trainers[GENERATOR].scheduler_step()
        self._model_trainers[SEGMENTER].scheduler_step()

    def on_epoch_begin(self):
        self._class_hausdorff_distance_gauge.reset()
        self._mean_hausdorff_distance_gauge.reset()
        self._iSEG_dice_gauge.reset()
        self._MRBrainS_dice_gauge.reset()
        self._ABIDE_dice_gauge.reset()
        self._iSEG_hausdorff_gauge.reset()
        self._MRBrainS_hausdorff_gauge.reset()
        self._ABIDE_hausdorff_gauge.reset()
        self._class_dice_gauge_on_patches.reset()
        self._js_div_inputs_gauge.reset()
        self._js_div_gen_gauge.reset()
        self._general_confusion_matrix_gauge.reset()
        self._iSEG_confusion_matrix_gauge.reset()
        self._MRBrainS_confusion_matrix_gauge.reset()
        self._ABIDE_confusion_matrix_gauge.reset()

        if self._current_epoch == self._training_config.patience_segmentation:
            self._model_trainers[GENERATOR].optimizer_lr = 0.001

    def on_test_epoch_end(self):
        if self.epoch % 10 == 0:
            self._per_dataset_hausdorff_distance_gauge.reset()
            self._class_dice_gauge_on_reconstructed_iseg_images.reset()
            self._class_dice_gauge_on_reconstructed_mrbrains_images.reset()
            self._class_dice_gauge_on_reconstructed_abide_images.reset()
            self._hausdorff_distance_gauge_on_reconstructed_iseg_images.reset()
            self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.reset(
            )
            self._hausdorff_distance_gauge_on_reconstructed_abide_images.reset(
            )

            all_patches, ground_truth_patches = get_all_patches(
                self._reconstruction_datasets, self._is_sliced)

            img_input = rebuild_image(self._dataset_configs.keys(),
                                      all_patches, self._input_reconstructors)
            img_gt = rebuild_image(self._dataset_configs.keys(),
                                   ground_truth_patches,
                                   self._gt_reconstructors)
            img_norm = rebuild_image(self._dataset_configs.keys(), all_patches,
                                     self._normalize_reconstructors)
            img_seg = rebuild_image(self._dataset_configs.keys(), all_patches,
                                    self._segmentation_reconstructors)

            save_rebuilt_image(self._current_epoch, self._save_folder,
                               self._dataset_configs.keys(), img_input,
                               "Input")
            save_rebuilt_image(self._current_epoch, self._save_folder,
                               self._dataset_configs.keys(), img_gt,
                               "Ground_Truth")
            save_rebuilt_image(self._current_epoch, self._save_folder,
                               self._dataset_configs.keys(), img_norm,
                               "Normalized")
            save_rebuilt_image(self._current_epoch, self._save_folder,
                               self._dataset_configs.keys(), img_seg,
                               "Segmented")

            if self._training_config.build_augmented_images:
                img_augmented = rebuild_image(self._dataset_configs.keys(),
                                              all_patches,
                                              self._augmented_reconstructors)
                augmented_minus_inputs, normalized_minus_inputs = rebuild_augmented_images(
                    img_augmented, img_input, img_gt, img_norm, img_seg)

                save_augmented_rebuilt_images(self._current_epoch,
                                              self._save_folder,
                                              self._dataset_configs.keys(),
                                              img_augmented,
                                              augmented_minus_inputs,
                                              normalized_minus_inputs)

            mean_mhd = []
            for dataset in self._dataset_configs.keys():
                self.custom_variables[
                    "Reconstructed Normalized {} Image".format(
                        dataset)] = self._slicer.get_slice(
                            SliceType.AXIAL,
                            np.expand_dims(
                                np.expand_dims(img_norm[dataset], 0), 0), 160)
                self.custom_variables[
                    "Reconstructed Segmented {} Image".format(
                        dataset)] = self._seg_slicer.get_colored_slice(
                            SliceType.AXIAL,
                            np.expand_dims(np.expand_dims(img_seg[dataset], 0),
                                           0), 160).squeeze(0)
                self.custom_variables[
                    "Reconstructed Ground Truth {} Image".format(
                        dataset)] = self._seg_slicer.get_colored_slice(
                            SliceType.AXIAL,
                            np.expand_dims(np.expand_dims(img_gt[dataset], 0),
                                           0), 160).squeeze(0)
                self.custom_variables["Reconstructed Input {} Image".format(
                    dataset)] = self._slicer.get_slice(
                        SliceType.AXIAL,
                        np.expand_dims(np.expand_dims(img_input[dataset], 0),
                                       0), 160)

                if self._training_config.build_augmented_images:
                    self.custom_variables[
                        "Reconstructed Augmented Input {} Image".format(
                            dataset)] = self._slicer.get_slice(
                                SliceType.AXIAL,
                                np.expand_dims(
                                    np.expand_dims(img_augmented[dataset], 0),
                                    0), 160)
                    self.custom_variables[
                        "Reconstructed Initial Noise {} Image".format(
                            dataset)] = self._seg_slicer.get_colored_slice(
                                SliceType.AXIAL,
                                np.expand_dims(
                                    np.expand_dims(
                                        augmented_minus_inputs[dataset], 0),
                                    0), 160).squeeze(0)
                    self.custom_variables[
                        "Reconstructed Noise {} After Normalization".format(
                            dataset)] = self._seg_slicer.get_colored_slice(
                                SliceType.AXIAL,
                                np.expand_dims(
                                    np.expand_dims(
                                        normalized_minus_inputs[dataset], 0),
                                    0), 160).squeeze(0)
                else:
                    self.custom_variables[
                        "Reconstructed Augmented Input {} Image".format(
                            dataset)] = np.zeros((224, 192))
                    self.custom_variables[
                        "Reconstructed Initial Noise {} Image".format(
                            dataset)] = np.zeros((224, 192))
                    self.custom_variables[
                        "Reconstructed Noise {} After Normalization".format(
                            dataset)] = np.zeros((224, 192))

                mean_mhd.append(
                    mean_hausdorff_distance(
                        to_onehot(torch.tensor(img_gt[dataset],
                                               dtype=torch.long),
                                  num_classes=4),
                        to_onehot(torch.tensor(img_seg[dataset],
                                               dtype=torch.long),
                                  num_classes=4))[-3:].mean())

                metric = self._model_trainers[SEGMENTER].compute_metrics(
                    to_onehot(torch.tensor(
                        img_seg[dataset]).unsqueeze(0).long(),
                              num_classes=4),
                    torch.tensor(img_gt[dataset]).unsqueeze(0).long())

                self._class_dice_gauge_on_reconstructed_images.update(
                    np.array(metric["Dice"]))

            self._per_dataset_hausdorff_distance_gauge.update(
                np.array(mean_mhd))

            if "iSEG" in img_seg:
                metric = self._model_trainers[SEGMENTER].compute_metrics(
                    to_onehot(torch.tensor(
                        img_seg["iSEG"]).unsqueeze(0).long(),
                              num_classes=4),
                    torch.tensor(img_gt["iSEG"]).unsqueeze(0).long())
                self._class_dice_gauge_on_reconstructed_iseg_images.update(
                    np.array(metric["Dice"]))
                self._hausdorff_distance_gauge_on_reconstructed_iseg_images.update(
                    mean_hausdorff_distance(
                        to_onehot(torch.tensor(img_gt["iSEG"],
                                               dtype=torch.long),
                                  num_classes=4),
                        to_onehot(torch.tensor(img_seg["iSEG"],
                                               dtype=torch.long),
                                  num_classes=4))[-3:])
            else:
                self._class_dice_gauge_on_reconstructed_iseg_images.update(
                    np.array([0.0, 0.0, 0.0]))
                self._hausdorff_distance_gauge_on_reconstructed_iseg_images.update(
                    np.array([0.0, 0.0, 0.0]))
            if "MRBrainS" in img_seg:
                metric = self._model_trainers[SEGMENTER].compute_metrics(
                    to_onehot(torch.tensor(
                        img_seg["MRBrainS"]).unsqueeze(0).long(),
                              num_classes=4),
                    torch.tensor(img_gt["MRBrainS"]).unsqueeze(0).long())
                self._class_dice_gauge_on_reconstructed_mrbrains_images.update(
                    np.array(metric["Dice"]))
                self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.update(
                    mean_hausdorff_distance(
                        to_onehot(torch.tensor(img_gt["MRBrainS"],
                                               dtype=torch.long),
                                  num_classes=4),
                        to_onehot(torch.tensor(img_seg["MRBrainS"],
                                               dtype=torch.long),
                                  num_classes=4))[-3:])
            else:
                self._class_dice_gauge_on_reconstructed_mrbrains_images.update(
                    np.array([0.0, 0.0, 0.0]))
                self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.update(
                    np.array([0.0, 0.0, 0.0]))
            if "ABIDE" in img_seg:
                metric = self._model_trainers[SEGMENTER].compute_metrics(
                    to_onehot(torch.tensor(
                        img_seg["ABIDE"]).unsqueeze(0).long(),
                              num_classes=4),
                    torch.tensor(img_gt["ABIDE"]).unsqueeze(0).long())
                self._class_dice_gauge_on_reconstructed_abide_images.update(
                    np.array(metric["Dice"]))
                self._hausdorff_distance_gauge_on_reconstructed_abide_images.update(
                    mean_hausdorff_distance(
                        to_onehot(torch.tensor(img_gt["ABIDE"],
                                               dtype=torch.long),
                                  num_classes=4),
                        to_onehot(torch.tensor(img_seg["ABIDE"],
                                               dtype=torch.long),
                                  num_classes=4))[-3:])
            else:
                self._class_dice_gauge_on_reconstructed_abide_images.update(
                    np.array([0.0, 0.0, 0.0]))
                self._hausdorff_distance_gauge_on_reconstructed_abide_images.update(
                    np.array([0.0, 0.0, 0.0]))

            if len(img_input) == 3:
                self.custom_variables[
                    "Reconstructed Images Histograms"] = cv2.imread(
                        construct_triple_histrogram(
                            img_norm["iSEG"], img_input["iSEG"],
                            img_norm["MRBrainS"], img_input["MRBrainS"],
                            img_norm["ABIDE"], img_input["ABIDE"])).transpose(
                                (2, 0, 1))
            elif len(img_input) == 2:
                self.custom_variables[
                    "Reconstructed Images Histograms"] = cv2.imread(
                        construct_double_histrogram(
                            img_norm["iSEG"], img_input["iSEG"],
                            img_norm["MRBrainS"],
                            img_input["MRBrainS"])).transpose((2, 0, 1))
            elif len(img_input) == 1:
                self.custom_variables[
                    "Reconstructed Images Histograms"] = cv2.imread(
                        construct_single_histogram(
                            img_norm[list(self._dataset_configs.keys())[0]],
                            img_input[list(self._dataset_configs.keys())[0]],
                        )).transpose((2, 0, 1))

        if "ABIDE" not in self._dataset_configs.keys():
            self.custom_variables[
                "Reconstructed Normalized ABIDE Image"] = np.zeros((224, 192))
            self.custom_variables[
                "Reconstructed Segmented ABIDE Image"] = np.zeros((224, 192))
            self.custom_variables[
                "Reconstructed Ground Truth ABIDE Image"] = np.zeros(
                    (224, 192))
            self.custom_variables[
                "Reconstructed Input ABIDE Image"] = np.zeros((224, 192))
            self.custom_variables[
                "Reconstructed Initial Noise ABIDE Image"] = np.zeros(
                    (224, 192))
            self.custom_variables[
                "Reconstructed Noise ABIDE After Normalization"] = np.zeros(
                    (224, 192))
        if "iSEG" not in self._dataset_configs.keys():
            self.custom_variables[
                "Reconstructed Normalized iSEG Image"] = np.zeros((224, 192))
            self.custom_variables[
                "Reconstructed Segmented iSEG Image"] = np.zeros((224, 192))
            self.custom_variables[
                "Reconstructed Ground Truth iSEG Image"] = np.zeros((224, 192))
            self.custom_variables["Reconstructed Input iSEG Image"] = np.zeros(
                (224, 192))
            self.custom_variables[
                "Reconstructed Initial Noise iSEG Image"] = np.zeros(
                    (224, 192))
            self.custom_variables[
                "Reconstructed Noise iSEG After Normalization"] = np.zeros(
                    (224, 192))
        if "MRBrainS" not in self._dataset_configs.keys():
            self.custom_variables[
                "Reconstructed Normalized MRBrainS Image"] = np.zeros(
                    (224, 192))
            self.custom_variables[
                "Reconstructed Segmented MRBrainS Image"] = np.zeros(
                    (224, 192))
            self.custom_variables[
                "Reconstructed Ground Truth MRBrainS Image"] = np.zeros(
                    (224, 192))
            self.custom_variables[
                "Reconstructed Input MRBrainS Image"] = np.zeros((224, 192))
            self.custom_variables[
                "Reconstructed Initial Noise MRBrainS Image"] = np.zeros(
                    (224, 192))
            self.custom_variables[
                "Reconstructed Noise MRBrainS After Normalization"] = np.zeros(
                    (224, 192))

        self.custom_variables["Runtime"] = to_html_time(
            timedelta(seconds=time.time() - self._start_time))

        if self._general_confusion_matrix_gauge._num_examples != 0:
            self.custom_variables["Confusion Matrix"] = np.array(
                np.fliplr(self._general_confusion_matrix_gauge.compute().cpu().
                          detach().numpy()))
        else:
            self.custom_variables["Confusion Matrix"] = np.zeros((4, 4))

        if self._iSEG_confusion_matrix_gauge._num_examples != 0:
            self.custom_variables["iSEG Confusion Matrix"] = np.array(
                np.fliplr(self._iSEG_confusion_matrix_gauge.compute().cpu().
                          detach().numpy()))
        else:
            self.custom_variables["iSEG Confusion Matrix"] = np.zeros((4, 4))

        if self._MRBrainS_confusion_matrix_gauge._num_examples != 0:
            self.custom_variables["MRBrainS Confusion Matrix"] = np.array(
                np.fliplr(self._MRBrainS_confusion_matrix_gauge.compute().cpu(
                ).detach().numpy()))
        else:
            self.custom_variables["MRBrainS Confusion Matrix"] = np.zeros(
                (4, 4))

        if self._ABIDE_confusion_matrix_gauge._num_examples != 0:
            self.custom_variables["ABIDE Confusion Matrix"] = np.array(
                np.fliplr(self._ABIDE_confusion_matrix_gauge.compute().cpu().
                          detach().numpy()))
        else:
            self.custom_variables["ABIDE Confusion Matrix"] = np.zeros((4, 4))

        self.custom_variables["Metric Table"] = to_html(
            ["CSF", "Grey Matter", "White Matter"], ["DSC", "HD"], [
                self._class_dice_gauge_on_patches.compute()
                if self._class_dice_gauge_on_patches.has_been_updated() else
                np.array([0.0, 0.0, 0.0]),
                self._class_hausdorff_distance_gauge.compute()
                if self._class_hausdorff_distance_gauge.has_been_updated() else
                np.array([0.0, 0.0, 0.0])
            ])

        self.custom_variables[
            "Dice score per class per epoch"] = self._class_dice_gauge_on_patches.compute(
            ) if self._class_dice_gauge_on_patches.has_been_updated(
            ) else np.array([0.0, 0.0, 0.0])
        self.custom_variables[
            "Dice score per class per epoch on reconstructed image"] = self._class_dice_gauge_on_reconstructed_images.compute(
            ) if self._class_dice_gauge_on_reconstructed_images.has_been_updated(
            ) else np.array([0.0, 0.0, 0.0])
        self.custom_variables[
            "Dice score per class per epoch on reconstructed iSEG image"] = self._class_dice_gauge_on_reconstructed_iseg_images.compute(
            ) if self._class_dice_gauge_on_reconstructed_iseg_images.has_been_updated(
            ) else np.array([0.0, 0.0, 0.0])
        self.custom_variables[
            "Dice score per class per epoch on reconstructed MRBrainS image"] = self._class_dice_gauge_on_reconstructed_mrbrains_images.compute(
            ) if self._class_dice_gauge_on_reconstructed_mrbrains_images.has_been_updated(
            ) else np.array([0.0, 0.0, 0.0])
        self.custom_variables[
            "Dice score per class per epoch on reconstructed ABIDE image"] = self._class_dice_gauge_on_reconstructed_abide_images.compute(
            ) if self._class_dice_gauge_on_reconstructed_abide_images.has_been_updated(
            ) else np.array([0.0, 0.0, 0.0])
        self.custom_variables[
            "Hausdorff Distance per class per epoch on reconstructed iSEG image"] = self._hausdorff_distance_gauge_on_reconstructed_iseg_images.compute(
            ) if self._hausdorff_distance_gauge_on_reconstructed_iseg_images.has_been_updated(
            ) else np.array([0.0, 0.0, 0.0])
        self.custom_variables[
            "Hausdorff Distance per class per epoch on reconstructed MRBrainS image"] = self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.compute(
            ) if self._hausdorff_distance_gauge_on_reconstructed_mrbrains_images.has_been_updated(
            ) else np.array([0.0, 0.0, 0.0])
        self.custom_variables[
            "Hausdorff Distance per class per epoch on reconstructed ABIDE image"] = self._hausdorff_distance_gauge_on_reconstructed_abide_images.compute(
            ) if self._hausdorff_distance_gauge_on_reconstructed_abide_images.has_been_updated(
            ) else np.array([0.0, 0.0, 0.0])

        if self._valid_dice_gauge.compute() > self._previous_mean_dice:
            new_table = to_html_per_dataset(
                ["CSF", "Grey Matter", "White Matter"], ["DSC", "HD"], [
                    [
                        self._iSEG_dice_gauge.compute()
                        if self._iSEG_dice_gauge.has_been_updated() else
                        np.array([0.0, 0.0, 0.0]),
                        self._iSEG_hausdorff_gauge.compute()
                        if self._iSEG_hausdorff_gauge.has_been_updated() else
                        np.array([0.0, 0.0, 0.0])
                    ],
                    [
                        self._MRBrainS_dice_gauge.compute()
                        if self._MRBrainS_dice_gauge.has_been_updated() else
                        np.array([0.0, 0.0, 0.0]),
                        self._MRBrainS_hausdorff_gauge.compute()
                        if self._MRBrainS_hausdorff_gauge.has_been_updated()
                        else np.array([0.0, 0.0, 0.0])
                    ],
                    [
                        self._ABIDE_dice_gauge.compute()
                        if self._ABIDE_dice_gauge.has_been_updated() else
                        np.array([0.0, 0.0, 0.0]),
                        self._ABIDE_hausdorff_gauge.compute()
                        if self._ABIDE_hausdorff_gauge.has_been_updated() else
                        np.array([0.0, 0.0, 0.0])
                    ]
                ], ["iSEG", "MRBrainS", "ABIDE"])

            self.custom_variables["Per-Dataset Metric Table"] = new_table
            self._previous_mean_dice = self._valid_dice_gauge.compute()
            self._previous_per_dataset_table = new_table
        else:
            self.custom_variables[
                "Per-Dataset Metric Table"] = self._previous_per_dataset_table
        self._valid_dice_gauge.reset()

        self.custom_variables["Jensen-Shannon Table"] = to_html_JS(
            ["Input data", "Generated Data"], ["JS Divergence"], [
                self._js_div_inputs_gauge.compute() if
                self._js_div_gen_gauge.has_been_updated() else np.array([0.0]),
                self._js_div_gen_gauge.compute() if
                self._js_div_gen_gauge.has_been_updated() else np.array([0.0])
            ])
        self.custom_variables["Jensen-Shannon Divergence"] = [
            self._js_div_inputs_gauge.compute(),
            self._js_div_gen_gauge.compute()
        ]
        self.custom_variables["Mean Hausdorff Distance"] = [
            self._class_hausdorff_distance_gauge.compute().mean()
            if self._class_hausdorff_distance_gauge.has_been_updated() else
            np.array([0.0])
        ]
        self.custom_variables[
            "Per Dataset Mean Hausdorff Distance"] = self._per_dataset_hausdorff_distance_gauge.compute(
            )

    def _update_image_plots(self, phase, inputs, generator_predictions,
                            segmenter_predictions, target, dataset_ids):
        inputs = torch.nn.functional.interpolate(inputs,
                                                 scale_factor=5,
                                                 mode="trilinear",
                                                 align_corners=True).numpy()
        generator_predictions = torch.nn.functional.interpolate(
            generator_predictions,
            scale_factor=5,
            mode="trilinear",
            align_corners=True).numpy()
        segmenter_predictions = torch.nn.functional.interpolate(
            torch.argmax(torch.nn.functional.softmax(segmenter_predictions,
                                                     dim=1),
                         dim=1,
                         keepdim=True).float(),
            scale_factor=5,
            mode="nearest").numpy()

        target = torch.nn.functional.interpolate(target.float(),
                                                 scale_factor=5,
                                                 mode="nearest").numpy()

        self.custom_variables["{} Input Batch Process {}".format(
            phase, self._run_config.local_rank)] = self._slicer.get_slice(
                SliceType.AXIAL, inputs, inputs.shape[2] // 2)
        self.custom_variables["{} Generated Batch Process {}".format(
            phase, self._run_config.local_rank)] = self._slicer.get_slice(
                SliceType.AXIAL, generator_predictions,
                generator_predictions.shape[2] // 2)
        self.custom_variables["{} Segmented Batch Process {}".format(
            phase,
            self._run_config.local_rank)] = self._seg_slicer.get_colored_slice(
                SliceType.AXIAL, segmenter_predictions,
                segmenter_predictions.shape[2] // 2)
        self.custom_variables[
            "{} Segmentation Ground Truth Batch Process {}".format(
                phase, self._run_config.local_rank
            )] = self._seg_slicer.get_colored_slice(SliceType.AXIAL, target,
                                                    target.shape[2] // 2)
        self.custom_variables["{} Label Map Batch Process {}".format(
            phase,
            self._run_config.local_rank)] = self._label_mapper.get_label_map(
                dataset_ids)

    def _should_activate_autoencoder(self):
        return self._current_epoch < self._patience_segmentation

    def _should_activate_segmentation(self):
        return self._current_epoch >= self._patience_segmentation

    def _update_histograms(self, inputs, target, gen_pred):
        self.custom_variables["Generated Intensity Histogram"] = flatten(
            gen_pred.cpu().detach())
        self.custom_variables["Input Intensity Histogram"] = flatten(
            inputs.cpu().detach())
        self.custom_variables["Per-Dataset Histograms"] = cv2.imread(
            construct_class_histogram(inputs, target, gen_pred)).transpose(
                (2, 0, 1))
        self.custom_variables[
            "Background Generated Intensity Histogram"] = gen_pred[torch.where(
                target[IMAGE_TARGET] == 0)].cpu().detach()
        self.custom_variables["CSF Generated Intensity Histogram"] = gen_pred[
            torch.where(target[IMAGE_TARGET] == 1)].cpu().detach()
        self.custom_variables["GM Generated Intensity Histogram"] = gen_pred[
            torch.where(target[IMAGE_TARGET] == 2)].cpu().detach()
        self.custom_variables["WM Generated Intensity Histogram"] = gen_pred[
            torch.where(target[IMAGE_TARGET] == 3)].cpu().detach()
        self.custom_variables["Background Input Intensity Histogram"] = inputs[
            torch.where(target[IMAGE_TARGET] == 0)].cpu().detach()
        self.custom_variables["CSF Input Intensity Histogram"] = inputs[
            torch.where(target[IMAGE_TARGET] == 1)].cpu().detach()
        self.custom_variables["GM Input Intensity Histogram"] = inputs[
            torch.where(target[IMAGE_TARGET] == 2)].cpu().detach()
        self.custom_variables["WM Input Intensity Histogram"] = inputs[
            torch.where(target[IMAGE_TARGET] == 3)].cpu().detach()