コード例 #1
0
ファイル: utils.py プロジェクト: planetceres/key_dynam
def get_dataset_paths(dataset_name):
    if dataset_name == "push_box_hardware":

        episodes_root = os.path.join(get_data_ssd_root(),
                                     "dataset/push_box_hardware")
        episodes_config = load_yaml(
            os.path.join(
                get_project_root(),
                'experiments/exp_22_push_box_hardware/push_box_hardware_episodes_config.yaml'
            ))

        transporter_model_chkpt = None
        dense_descriptor_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/22/dataset_push_box_string_pull/trained_models/perception/dense_descriptors/data_aug_2020-07-02-02-39-27-400442/net_best_model.pth"

        return {
            'dataset_name': dataset_name,
            'dataset_root': episodes_root,
            'episodes_config': episodes_config,
            'main_camera_name': 'd415_01',
            'dense_descriptor_camera_list': ['d415_01', 'd415_02'],
            'transporter_model_chkpt': transporter_model_chkpt,
            'dense_descriptor_model_chkpt': dense_descriptor_model_chkpt,
        }
    elif dataset_name == "push_box_string_pull":
        episodes_root = os.path.join(get_data_ssd_root(),
                                     "dataset/push_box_string_pull")
        episodes_config = load_yaml(
            os.path.join(
                get_project_root(),
                'experiments/exp_22_push_box_hardware/push_box_string_pull_episodes_config.yaml'
            ))

        transporter_model_chkpt = None

        dense_descriptor_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/22/dataset_push_box_string_pull/trained_models/perception/dense_descriptors/data_aug_2020-07-02-02-39-27-400442/net_best_model.pth"

        return {
            'dataset_name': dataset_name,
            'dataset_root': episodes_root,
            'episodes_config': episodes_config,
            'main_camera_name': 'd415_01',
            'dense_descriptor_camera_list': ['d415_01', 'd415_02'],
            'transporter_model_chkpt': transporter_model_chkpt,
            'dense_descriptor_model_chkpt': dense_descriptor_model_chkpt,
        }

    else:
        raise ValueError("unknown dataset:", dataset_name)
コード例 #2
0
 def load_config():
     config = load_yaml(
         os.path.join(
             get_project_root(),
             "experiments/exp_22_push_box_hardware/integral_heatmap_3d.yaml"
         ))
     return config
コード例 #3
0
ファイル: test_dataset.py プロジェクト: planetceres/key_dynam
def test_pusher_slider_dataset():
    # dataset, config = create_pusher_slider_dataset()

    project_root = get_project_root()
    config_file = os.path.join(project_root, "experiments/01/config.yaml")
    config = load_yaml(config_file)

    # new dataset loading approach
    episodes = load_episodes_from_config(config)
    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    dataset = MultiEpisodeDataset(config,
                                  action_function=action_function,
                                  observation_function=observation_function,
                                  episodes=episodes,
                                  phase="train")

    data = dataset[0]  # test the getitem
    print("type(data)", type(data))
    print("list(data)", list(data))

    print(type(data["observations"]))
    print("observations.shape", data["observations"].shape)
    print("actions.shape", data["actions"].shape)

    print("observations", data["observations"])
    print("actions", data["actions"])

    stats = dataset.compute_dataset_statistics()

    print("stats", stats)
コード例 #4
0
def sample_random_mug():
    sdf_dir = os.path.join(get_data_root(), "stable/sim_assets/anzu_mugs")
    # sdf_file = random.choice(SDFHelper.get_sdf_list(sdf_dir))

    mug_list = load_yaml(
        os.path.join(get_project_root(), 'experiments/exp_20_mugs/mugs.yaml'))
    sdf_file = random.choice(mug_list['corelle_mug-small'])
    sdf_file = os.path.join(sdf_dir, sdf_file)
    return sdf_file
コード例 #5
0
def load_default_config():
    """
    Loads the experiments/05/config.yaml
    :return:
    :rtype:
    """
    config_file = os.path.join(get_project_root(),
                               'experiments/05/config.yaml')
    config = load_yaml(config_file)
    return config
コード例 #6
0
    def f(q_tmp):
        config = load_yaml(
            os.path.join(get_project_root(),
                         'experiments/exp_20_mugs/config.yaml'))
        config['dataset']['num_episodes'] = num_episodes_per_thread
        out = collect_episodes(config,
                               output_dir=OUTPUT_DIR,
                               visualize=False,
                               debug=False,
                               run_from_thread=True)

        q_tmp.put(out)
コード例 #7
0
ファイル: test_dataset.py プロジェクト: planetceres/key_dynam
def test_pusher_slider_keypoint_dataset():
    project_root = get_project_root()
    config_file = os.path.join(project_root, "experiments/02/config.yaml")
    config = load_yaml(config_file)

    config["n_history"] = 1
    config["n_roll"] = 0

    # new dataset loading approach
    episodes = load_episodes_from_config(config)
    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    dataset = MultiEpisodeDataset(config,
                                  action_function=action_function,
                                  observation_function=observation_function,
                                  episodes=episodes,
                                  phase="train")

    # dataset, config = create_pusher_slider_keypoint_dataset(config=config)

    episode_names = dataset.get_episode_names()
    episode_names.sort()
    episode_name = episode_names[0]
    episode = dataset.episode_dict[episode_name]
    obs_raw = episode.get_observation(0)
    obs_raw['slider']['angle'] = 0

    dataset.observation_function(obs_raw)

    print("20 degrees\n\n\n\n")
    obs_raw['slider']['angle'] = np.deg2rad(90)
    dataset.observation_function(obs_raw)
    quit()

    data = dataset[0]  # test the getitem
    print("type(data)", type(data))
    print("data.keys()", data.keys())

    print(type(data["observations"]))
    print("observations.shape", data["observations"].shape)
    print("actions.shape", data["actions"].shape)

    print("observations", data["observations"])
    print("actions", data["actions"])
コード例 #8
0
ファイル: utils.py プロジェクト: planetceres/key_dynam
def load_episodes_from_config(config):
    """
    Loads episodes using the path specified in the config
    :param config:
    :type config:
    :return:
    :rtype:
    """
    data_path = config["dataset"]["data_path"]
    if not os.path.isabs(data_path):
        data_path = os.path.join(get_project_root(), data_path)

    # load the data
    print("loading data from disk . . . ")
    raw_data = load_pickle(data_path)
    print("finished loading data")
    episodes = PyMunkEpisodeReader.load_pymunk_episodes_from_raw_data(raw_data)

    return episodes
コード例 #9
0
def debug():

    save_dir = os.path.join(get_project_root(),
                            'sandbox/mpc/push_right_box_horizontal')

    save_dir = "/home/manuelli/data/key_dynam/sandbox/2020-07-07-20-09-54_push_right_box_horizontal"
    plan_msg = load_pickle(os.path.join(save_dir, 'plan_msg.p'),
                           encoding='latin1')
    plan_msg = zmq_utils.convert(plan_msg)

    compute_control_action_msg = load_pickle(os.path.join(
        save_dir, 'compute_control_action_msg.p'),
                                             encoding='latin1')
    compute_control_action_msg = zmq_utils.convert(compute_control_action_msg)

    K_matrix = None
    T_world_camera = None

    if 'K_matrix' in plan_msg:
        K_matrix = plan_msg['K_matrix']

    if 'T_world_camera' in plan_msg:
        T_world_camera = plan_msg['T_world_camera']

    d = load_model_and_data(
        K_matrix=K_matrix,
        T_world_camera=T_world_camera,
    )

    controller = ZMQController(
        config=d['config'],
        model_dy=d['model_dy'],
        action_function=d['action_function'],
        observation_function=d['observation_function'],
        visual_observation_function=d['visual_observation_function'],
        planner=d['planner'],
        debug=True,
        zmq_enabled=False,
        camera_info=d['camera_info'],
    )

    controller._on_plan_msg(plan_msg)
    controller._on_compute_control_action(compute_control_action_msg)
コード例 #10
0
ファイル: utils.py プロジェクト: planetceres/key_dynam
def construct_dataset_from_config(
        config,  # dict for global config
        phase="train",  # str: either "train" or "valid"
        episodes=None,  # optional dict of episodes to use instead of loading data
):
    """
    Construct dataset based on global config
    :param config:
    :type config:
    :return:
    :rtype:
    """

    assert phase in ["train", "valid"]

    data_path = config["dataset"]["data_path"]
    if not os.path.isabs(data_path):
        data_path = os.path.join(get_project_root(), data_path)

    if episodes is None:
        # load the data if not passed in
        episodes = load_episodes_from_config(config)

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    dataset = MultiEpisodeDataset(config,
                                  action_function=action_function,
                                  observation_function=observation_function,
                                  episodes=episodes,
                                  phase=phase)

    return_data = {
        "dataset": dataset,
        "action_function": action_function,
        "observation_function": observation_function,
        "episodes": episodes,
    }

    return return_data
コード例 #11
0
def main():
    start_time = time.time()
    config = load_yaml(os.path.join(get_project_root(), 'experiments/drake_pusher_slider/env_config.yaml'))
    config['dataset']['num_episodes'] = 1000 # half for train, half for valid

    set_seed(500) # just randomly chosen

    num_episodes = config['dataset']['num_episodes']
    DATASET_NAME = "box_push_%d" %(num_episodes)
    OUTPUT_DIR = os.path.join(get_data_ssd_root(), 'dataset', DATASET_NAME)

    if not os.path.exists(OUTPUT_DIR):
        os.makedirs(OUTPUT_DIR)
    collect_episodes(
        config,
        output_dir=OUTPUT_DIR,
        visualize=False,
        debug=False)

    elapsed = time.time() - start_time
    print("Generating and saving dataset to disk took %d seconds" % (int(elapsed)))
コード例 #12
0
def main():
    start_time = time.time()
    config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_20_mugs/config.yaml'))

    config['dataset']['num_episodes'] = 10

    set_seed(500)  # just randomly chosen

    DATASET_NAME = "mugs_%d" % (config['dataset']['num_episodes'])
    OUTPUT_DIR = os.path.join(get_data_root(), 'sandbox', DATASET_NAME)
    print("OUTPUT_DIR:", OUTPUT_DIR)

    collect_episodes(config,
                     output_dir=OUTPUT_DIR,
                     visualize=False,
                     debug=False)

    elapsed = time.time() - start_time
    print("Generating and saving dataset to disk took %d seconds" %
          (int(elapsed)))
コード例 #13
0
ファイル: test_dataset.py プロジェクト: planetceres/key_dynam
def create_pusher_slider_keypoint_dataset(config=None):
    # load some previously generated data

    project_root = get_project_root()
    if config is None:
        config_file = os.path.join(project_root, "experiments/02/config.yaml")
        config = load_yaml(config_file)

    action_function = ActionFunctionFactory.pusher_velocity
    obs_function = ObservationFunctionFactory.pusher_pose_slider_keypoints(
        config)

    DATA_PATH = os.path.join(
        project_root,
        "test_data/pusher_slider_10_episodes/2019-10-22-21-30-02-536750.p")

    raw_data = load_pickle(DATA_PATH)
    episodes = PyMunkEpisodeReader.load_pymunk_episodes_from_raw_data(raw_data)

    # create MultiEpisodeDataset
    dataset = MultiEpisodeDataset(config,
                                  action_function=action_function,
                                  observation_function=obs_function,
                                  episodes=episodes)

    episode = dataset.get_random_episode()
    data_0 = episode.get_observation(0)
    data_1 = episode.get_observation(1)

    print("time 0", data_0["sim_time"])
    print("time 1", data_1["sim_time"])

    # episode_name = episodes.keys()[0]
    # episode = episodes[episode_name]
    # data = episode.data
    # print("episode.data.keys()", episode.data.keys())
    # print("test ", type(data["trajectory"][0].keys()))
    # print("test ", data["trajectory"][0].keys())
    return dataset, config
コード例 #14
0
def run_interactive_circle_slider():
    """
    Launch interactive environment where you can move the pusher around with
    the arrow keys
    :return:
    :rtype:
    """
    config_file = os.path.join(get_project_root(),
                               'experiments/03/config.yaml')
    config = load_yaml(config_file)
    env = PusherSlider(config=config)
    env.reset()

    while env._running:
        action = env.process_events()
        env.step(action)
        obs, reward, done, info = env.step(action)
        env.render(mode='human')

        if True:
            print("\n\n\n")
            print("slider position", obs['slider']['position'])
            print("pusher position", obs['pusher']['position'])
コード例 #15
0
def main():
    start_time = time.time()
    config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_18_box_on_side/config.yaml'))
    # config['dataset']['num_episodes'] = 500  # half for train, half for valid
    config['dataset']['num_episodes'] = 600  # half for train, half for valid

    set_seed(500)  # just randomly chosen

    DATASET_NAME = "dps_box_on_side_%d" % (config['dataset']['num_episodes'])
    OUTPUT_DIR = os.path.join(get_data_root(), "dev/experiments/18/data",
                              DATASET_NAME)
    print("OUTPUT_DIR:", OUTPUT_DIR)

    collect_episodes(config,
                     output_dir=OUTPUT_DIR,
                     visualize=False,
                     debug=False)

    elapsed = time.time() - start_time
    print("Generating and saving dataset to disk took %d seconds" %
          (int(elapsed)))
コード例 #16
0
def load_model_and_data(
    K_matrix=None,
    T_world_camera=None,
):

    dataset_name = "push_box_hardware"

    model_name = "DD_3D/2020-07-02-17-59-21-362337_DD_3D_n_his_2_T_aug"
    train_dir = os.path.join(
        get_data_root(),
        "dev/experiments/22/dataset_push_box_hardware/trained_models/dynamics")
    # train_dir = "/home/manuelli/data/key_dynam/dev/experiments/22/dataset_push_box_hardware/trained_models/dynamics"

    train_dir = os.path.join(train_dir, model_name)
    ckpt_file = os.path.join(train_dir, "net_best_dy_state_dict.pth")

    train_config = load_yaml(os.path.join(train_dir, 'config.yaml'))
    state_dict = torch.load(ckpt_file)

    # build dynamics model
    model_dy = build_dynamics_model(train_config)
    # print("state_dict.keys()", state_dict.keys())
    model_dy.load_state_dict(state_dict)
    model_dy = model_dy.eval()
    model_dy = model_dy.cuda()

    # load the dataset
    dataset_paths = get_dataset_paths(dataset_name)
    dataset_root = dataset_paths['dataset_root']
    episodes_config = dataset_paths['episodes_config']

    spatial_descriptor_data = load_pickle(
        os.path.join(train_dir, 'spatial_descriptors.p'))
    metadata = load_pickle(os.path.join(train_dir, 'metadata.p'))

    ref_descriptors = spatial_descriptor_data['spatial_descriptors']
    ref_descriptors = torch_utils.cast_to_torch(ref_descriptors).cuda()

    # dense descriptor model
    model_dd_file = metadata['model_file']
    model_dd = torch.load(model_dd_file)
    model_dd = model_dd.eval()
    model_dd = model_dd.cuda()

    camera_name = train_config['dataset']['visual_observation_function'][
        'camera_name']

    camera_info = None
    if (T_world_camera is not None) and (K_matrix is not None):
        camera_info = {
            "K": K_matrix,
            'T_world_camera': T_world_camera,
        }
    else:
        camera_info = get_spartan_camera_info(camera_name)

    camera_info['camera_name'] = camera_name
    visual_observation_function = \
        VisualObservationFunctionFactory.descriptor_keypoints_3D(config=train_config,
                                                                 camera_name=camera_name,
                                                                 model_dd=model_dd,
                                                                 ref_descriptors=ref_descriptors,
                                                                 K_matrix=camera_info['K'],
                                                                 T_world_camera=camera_info['T_world_camera'],
                                                                 )

    action_function = ActionFunctionFactory.function_from_config(train_config)
    observation_function = ObservationFunctionFactory.function_from_config(
        train_config)

    #### PLANNER #######
    planner = None
    # make a planner config
    planner_config = copy.copy(train_config)
    config_tmp = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_22_push_box_hardware/config_DD_3D.yaml'))
    planner_config['mpc'] = config_tmp['mpc']
    if PLANNER_TYPE == "random_shooting":
        planner = RandomShootingPlanner(planner_config)
    elif PLANNER_TYPE == "mppi":
        planner = PlannerMPPI(planner_config)
    else:
        raise ValueError("unknown planner type: %s" % (PLANNER_TYPE))

    return {
        "model_dy": model_dy,
        'config': train_config,
        'spatial_descriptor_data': spatial_descriptor_data,
        'action_function': action_function,
        'observation_function': observation_function,
        'visual_observation_function': visual_observation_function,
        'planner': planner,
        'camera_info': camera_info,
    }
コード例 #17
0
def test_gym_API():
    """
    Collects two episodes and saves them to disk
    Currently no images are being saved
    :return:
    :rtype:
    """

    config_file = os.path.join(get_project_root(),
                               'experiments/01/config.yaml')
    config = load_yaml(config_file)

    env = PusherSlider(config=config)
    env.setup_environment()

    episode_container = None  # for namespacing purposes
    multi_episode_container = MultiEpisodeContainer()

    print("fps", env._fps)
    num_episodes = 1
    # num_timesteps_per_episode = 40
    for episode_idx in range(num_episodes):
        env.reset()
        obs_prev = env.get_observation()

        episode_container = EpisodeContainer()
        episode_container.set_config(env.config)
        for i in range(env.config['dataset']['num_timesteps']):
            env.render(mode='human')
            if i == 50:

                # save this image out in local directory
                img = env.render(mode='rgb_array')

                if DEBUG_PRINTS:
                    print("saving figure to file")
                    print("type(img)", type(img))
                    print(img.shape)
                    print(img.dtype)

                pil_img = numpy_to_PIL(img)
                pil_img.save('test_PIL.png')

            action = np.array([100, 0])
            obs, reward, done, info = env.step(action)

            episode_container.add_obs_action(obs_prev, action)
            obs_prev = obs

            if DEBUG_PRINTS:
                print("\n\nsim_time = ", env._sim_time)
                print("obs sim_time = ", obs['sim_time'])

        multi_episode_container.add_episode(episode_container)

    if True:
        save_file = os.path.join(os.getcwd(), "single_episode_log.p")
        episode_container.save_to_file(save_file)

        multi_episode_save_file = os.path.join(os.getcwd(),
                                               "multi_episode_log.p")
        multi_episode_container.save_to_file(multi_episode_save_file)
コード例 #18
0
 def load_config():
     return load_yaml(
         os.path.join(
             get_project_root(),
             'experiments/exp_22_push_box_hardware/config_DD_3D.yaml'))
コード例 #19
0
def multiprocess_main(num_episodes=1000, num_threads=4):
    set_seed(500)  # just randomly chosen

    start_time = time.time()
    config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_20_mugs/config.yaml'))

    num_episodes_per_thread = math.ceil(num_episodes / num_threads)
    num_episodes = num_threads * num_episodes_per_thread

    # DATASET_NAME = "mugs_random_colors_%d" % (num_episodes)
    # DATASET_NAME = "single_mug_%d"
    # DATASET_NAME = "correlle_mug-small_single_color_%d" %(num_episodes)
    # DATASET_NAME = "single_corelle_mug_%d" %(num_episodes)
    # DATASET_NAME = "correlle_mug-small_many_colors_%d" %(num_episodes)
    DATASET_NAME = "correlle_mug-small_many_colors_random_%d" % (num_episodes)
    # OUTPUT_DIR = os.path.join(get_data_root(), 'sandbox', DATASET_NAME)
    OUTPUT_DIR = os.path.join(get_data_ssd_root(), 'dataset', DATASET_NAME)
    print("OUTPUT_DIR:", OUTPUT_DIR)

    output_dir = OUTPUT_DIR
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    def f(q_tmp):
        config = load_yaml(
            os.path.join(get_project_root(),
                         'experiments/exp_20_mugs/config.yaml'))
        config['dataset']['num_episodes'] = num_episodes_per_thread
        out = collect_episodes(config,
                               output_dir=OUTPUT_DIR,
                               visualize=False,
                               debug=False,
                               run_from_thread=True)

        q_tmp.put(out)

    q = Queue()

    process_list = []
    for i in range(num_threads):
        p = Process(target=f, args=(q, ))
        p.start()
        process_list.append(p)

    metadata = {'episodes': {}}
    for p in process_list:
        while p.is_alive():
            p.join(timeout=1)

            # empty out the queue
            while not q.empty():
                out = q.get()
                metadata['episodes'].update(out['metadata']['episodes'])

    # double check
    for p in process_list:
        p.join()

    time.sleep(1.0)
    print("All threads joined")
    elapsed = time.time() - start_time

    # collect the metadata.yaml files

    while not q.empty():
        out = q.get()
        metadata['episodes'].update(out['metadata']['episodes'])

    save_yaml(metadata, os.path.join(OUTPUT_DIR, 'metadata.yaml'))
    print("Generating and saving dataset to disk took %d seconds" %
          (int(elapsed)))
コード例 #20
0
def load_simple_config():
    config_file = os.path.join(get_project_root(), 'config/simple_config.yaml')
    config = load_yaml(config_file)
    return config
コード例 #21
0
def run_gym_env():
    """
    Runs the gym env
    :return:
    :rtype:
    """
    DEBUG_PRINTS = True
    USE_PYGAME = True

    try:

        # setup pygame thing
        if USE_PYGAME:
            pygame.init()
            screen = pygame.display.set_mode(
                (640, 480))  # needed for grabbing focus
            clock = pygame.time.Clock()

        default_action = np.zeros(2)
        velocity = 0.2

        if USE_PYGAME:
            action = process_pygame_events()
        else:
            action = default_action

        config = load_yaml(
            os.path.join(get_project_root(),
                         'experiments/exp_20_mugs/config.yaml'))
        env = DrakeMugsEnv(config)
        env.reset()

        context = env.get_mutable_context()
        pos = np.array([0, 0, 0.1])
        # quat = transforms3d.euler.euler2quat(np.deg2rad(90), 0, 0)
        quat = np.array([1, 0, 0, 0])
        q = np.concatenate((quat, pos))
        env.set_object_position(context=context, q=q)
        # set the box pose
        # context = env.get_mutable_context()
        # pos = np.array([1.56907481e-04, 1.11390697e-06, 5.11972761e-02])
        # quat = np.array([ 7.13518047e-01, -6.69765583e-07, -7.00636851e-01, -6.82079212e-07])
        # q_slider = np.concatenate((quat, pos))
        # env.set_slider_position(context, q=q_slider)

        env.simulator.set_target_realtime_rate(1.0)

        # move box araound
        # context = env.get_mutable_context()
        # q_slider = [-0.05, 0, 0.03]

        num_model_instances = env.diagram_wrapper.mbp.num_model_instances()
        print("num_model_instances", num_model_instances)
        print("num_positions", env.diagram_wrapper.mbp.num_positions())

        label_db = env.diagram_wrapper.get_label_db()
        print("label db:", label_db.all())

        mask_db = env.diagram_wrapper.get_labels_to_mask()
        print("mask db:", mask_db.all())

        # context = env.get_mutable_context()
        #
        # # set the position of pusher
        # q_pusher = [0.2,0.2]
        # mbp = env.diagram_wrapper.mbp
        # mbp_context = env.diagram.GetMutableSubsystemContext(mbp, context)
        # mbp.SetPositions(mbp_context, env.diagram_wrapper.models['pusher'], q_pusher)

        camera_names = list(
            config['env']['rgbd_sensors']['sensor_list'].keys())
        camera_names.sort()

        image_vis = ImageVisualizer(len(camera_names), 1)

        print("running sim")

        while True:
            if USE_PYGAME:
                action = velocity * process_pygame_events()
            else:
                action = default_action

            # print("action:", action)
            obs, reward, done, info = env.step(action)

            # print("obs\n", obs)

            # visualize RGB images in matplotlib
            for idx, camera_name in enumerate(camera_names):
                rgb_image = obs['images'][camera_name]['rgb']
                image_vis.draw_image(idx, 0, rgb_image)

            image_vis.visualize_interactive()

            # # print unique depth values
            # depth_32F = obs['images']['camera_0']['depth_32F']
            # print("unique depth_32F vals", np.unique(depth_32F))
            # # print unique depth values
            # depth_16U = obs['images']['camera_0']['depth_16U']
            # print("unique depth_16U vals", np.unique(depth_16U))

        # build simulator
    except KeyboardInterrupt:
        pygame.quit()
        plt.close()
コード例 #22
0
ファイル: test_dataset.py プロジェクト: planetceres/key_dynam
def test_dynanet_mlp():
    # just try doing a single forward pass
    dataset, config = create_pusher_slider_dataset()
    stats = dataset.compute_dataset_statistics()

    n_history = config["train"]["n_history"]
    # obs_mean_repeat = stats['observations']['mean'].repeat(n_history, 1)
    # obs_std_repeat = stats['observations']['std'].repeat(n_history, 1)
    obs_mean_repeat = stats['observations']['mean']
    obs_std_repeat = stats['observations']['std']
    observations_normalizer = DataNormalizer(obs_mean_repeat, obs_std_repeat)

    # action_mean_repeat = stats['actions']['mean'].repeat(n_history, 1)
    # action_std_repeat = stats['actions']['std'].repeat(n_history, 1)
    action_mean_repeat = stats['actions']['mean']
    action_std_repeat = stats['actions']['std']
    actions_normalizer = DataNormalizer(action_mean_repeat, action_std_repeat)

    config["dataset"]["state_dim"] = 5
    config["dataset"]["action_dim"] = 2
    model = DynaNetMLP(config)

    # print summary of model before adding new modules
    print("\n\n -----summary of model BEFORE adding normalization modules")
    print("num trainable parameters", count_trainable_parameters(model))
    print("num non-trainable parameters ",
          count_non_trainable_parameters(model))
    print("\n\n")

    # summary of model after adding new params
    model.set_action_normalizer(actions_normalizer)
    model.set_state_normalizer(observations_normalizer)

    print("\n\n -----summary of model AFTER adding normalization modules")
    print("num trainable parameters", count_trainable_parameters(model))
    print("num non-trainable parameters ",
          count_non_trainable_parameters(model))
    print("\n\n")

    # unsqueeze to mimic dataloader with batch size of 1
    data = dataset[0]  # test the getitem
    observations = data['observations'].unsqueeze(0)
    actions = data['actions'].unsqueeze(0)

    obs_slice = observations[:, :n_history, :]
    action_slice = actions[:, :n_history, :]

    print("action_slice.shape", action_slice.shape)
    print("obs_slice.shape", obs_slice.shape)

    # run the model forwards one timestep
    output = model.forward(obs_slice, action_slice)

    print("output.shape", output.shape)

    # save the model with torch.save and torch.load
    save_dir = os.path.join(get_project_root(), 'sandbox')
    model_save_file = os.path.join(save_dir, "model.pth")
    torch.save(model, model_save_file)

    # load the model
    model_load = torch.load(model_save_file)
    print("\n\n -----summary of model LOADED from disk")
    print("num trainable parameters", count_trainable_parameters(model_load))
    print("num non-trainable parameters ",
          count_non_trainable_parameters(model_load))
    print("\n\n")

    # now try doing the same but with the state dict
    # my hunch is that this won't work . . .
    params_save_file = os.path.join(save_dir, "model_params.pth")
    torch.save(model.state_dict(), params_save_file)

    # load the model
    model_load = DynaNetMLP(config)
    state_dict = torch.load(params_save_file)
    for param_tensor in state_dict:
        print(param_tensor, "\t", state_dict[param_tensor].size())

    # try creating some dummy DataNormalizer objects
    # model_load.set_state_normalizer(DataNormalizer(0.0,1.0))
    # model_load.set_action_normalizer(DataNormalizer(0.0,1.0))
    model_load.load_state_dict(state_dict)
    print("\n\n -----summary of model LOADED from disk with state_dict method")
    print("num trainable parameters", count_trainable_parameters(model_load))
    print("num non-trainable parameters ",
          count_non_trainable_parameters(model_load))
    print("\n\n")

    print("model_load._action_normalizer._mean",
          model_load.action_normalizer._mean)
    print("model._action_normalizer._mean", model.action_normalizer._mean)
コード例 #23
0
def main():
    # load dynamics model
    model_dict = load_autoencoder_model()
    model = model_dict['model_dy']
    model_ae = model_dict['model_ae']
    visual_observation_function = model_dict['visual_observation_function']

    config = model.config

    env_config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_18_box_on_side/config.yaml'))
    env_config['env']['observation']['depth_int16'] = True
    n_history = config['train']['n_history']

    # create the environment
    # create the environment
    env = DrakePusherSliderEnv(env_config)
    env.reset()

    # create another environment for doing rollouts
    env2 = DrakePusherSliderEnv(env_config, visualize=False)
    env2.reset()

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.drake_pusher_position_3D(
        config)

    episode = OnlineEpisodeReader()
    mpc_input_builder = DynamicsModelInputBuilder(
        observation_function=observation_function,
        visual_observation_function=visual_observation_function,
        action_function=action_function,
        episode=episode)

    vis = meshcat_utils.make_default_visualizer_object()
    vis.delete()

    initial_cond = get_initial_state()
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    obs_init = env.get_observation()

    # visualize starting position of the object
    print("obs_init.keys()", obs_init.keys())
    print("obs_init['slider']['position']", obs_init['slider']['position'])
    T = DrakePusherSliderEnv.object_position_from_observation(obs_init)
    vis['start_pose'].set_object(triad(scale=0.1))
    vis['state_pose'].set_transform(T)

    #### ROLLOUT USING LEARNED MODEL + GROUND TRUTH ACTIONS ############
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    # add just some large number of these
    episode.clear()
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    #### ROLLOUT THE ACTION SEQUENCE USING THE SIMULATOR ##########
    # rollout single action sequence using the simulator
    gt_rollout_data = env_utils.rollout_action_sequence(
        env, initial_cond['action_sequence'].cpu().numpy())
    env_obs_rollout_gt = gt_rollout_data['observations']
    gt_rollout_episode = gt_rollout_data['episode_reader']

    for i, env_obs in enumerate(gt_rollout_data['observations']):
        T = DrakePusherSliderEnv.object_position_from_observation(env_obs)
        vis_name = "GT_trajectory/%d" % (i)
        vis[vis_name].set_object(triad(scale=0.1))
        vis[vis_name].set_transform(T)

    action_state_gt = mpc_input_builder.get_action_state_tensors(
        start_idx=0, num_timesteps=N, episode=gt_rollout_episode)

    state_rollout_gt = action_state_gt['states']
    action_rollout_gt = action_state_gt['actions']
    z_object_rollout_gt = model.compute_z_state(
        state_rollout_gt)['z_object_flat']
    print('state_rollout_gt.shape', state_rollout_gt.shape)
    print("z_object_rollout_gt.shape", z_object_rollout_gt.shape)

    def goal_func(obs_tmp):
        state_tmp = mpc_input_builder.get_state_input_single_timestep(
            {'observation': obs_tmp})['state']
        return model.compute_z_state(
            state_tmp.unsqueeze(0))['z_object'].flatten()

    # using the vision model to get "goal" keypoints
    z_object_goal = goal_func(env_obs_rollout_gt[-1])
    z_object_goal_np = torch_utils.cast_to_numpy(z_object_goal)

    # input("press Enter to continue")

    #### ROLLOUT USING LEARNED MODEL + GROUND TRUTH ACTIONS ############
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    # add just some large number of these
    episode.clear()
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    # [n_history, state_dim]
    idx = episode.get_latest_idx()

    dyna_net_input = mpc_input_builder.get_dynamics_model_input(
        idx, n_history=n_history)
    state_init = dyna_net_input['states'].cuda()  # [n_history, state_dim]
    action_init = dyna_net_input['actions']  # [n_history, action_dim]

    print("state_init.shape", state_init.shape)
    print("action_init.shape", action_init.shape)
    print("n_history", n_history)

    action_seq_gt_torch = initial_cond['action_sequence']
    action_input = torch.cat(
        (action_init[:(n_history - 1)], action_seq_gt_torch), dim=0).cuda()
    print("action_input.shape", action_input.shape)

    # rollout using the ground truth actions and learned model
    # need to add the batch dim to do that
    z_init = model.compute_z_state(state_init)['z']
    rollout_pred = rollout_model(state_init=z_init.unsqueeze(0),
                                 action_seq=action_input.unsqueeze(0),
                                 dynamics_net=model,
                                 compute_debug_data=True)

    state_pred_rollout = rollout_pred['state_pred'].squeeze(0)

    print("state_pred_rollout.shape", state_pred_rollout.shape)
    # input("press Enter to continue")

    # check L2 distance between predicted and actual
    # basically comparing state_pred_rollout and state_rollout_gt
    print("state_rollout_gt[-1]\n", state_rollout_gt[-1])
    print("state_pred_rollout[-1]\n", state_pred_rollout[-1])

    index_dict = get_object_and_robot_state_indices(config)
    object_indices = index_dict['object_indices']

    # reset the environment and use the MPC controller to stabilize this
    # now setup the MPC to try to stabilize this . . . .
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    episode.clear()

    # add just some large number of these
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    # input("press Enter to continue")

    # make a planner config
    planner_config = copy.copy(config)
    config_tmp = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/drake_pusher_slider/eval_config.yaml'))
    planner_config['mpc'] = config_tmp['mpc']

    planner_config['mpc']['mppi']['terminal_cost_only'] = TERMINAL_COST_ONLY
    planner_config['mpc']['random_shooting'][
        'terminal_cost_only'] = TERMINAL_COST_ONLY

    planner = None
    if PLANNER_TYPE == "random_shooting":
        planner = RandomShootingPlanner(planner_config)
    elif PLANNER_TYPE == "mppi":
        planner = PlannerMPPI(planner_config)
    else:
        raise ValueError("unknown planner type: %s" % (PLANNER_TYPE))

    mpc_out = None
    action_seq_mpc = None
    state_pred_mpc = None
    counter = -1
    while True:
        counter += 1
        print("\n\n-----Running MPC Optimization: Counter (%d)-------" %
              (counter))

        obs_cur = env.get_observation()
        episode.add_observation_only(obs_cur)

        if counter == 0 or REPLAN:
            print("replanning")
            ####### Run the MPC ##########

            # [1, state_dim]

            n_look_ahead = N - counter
            if USE_FIXED_MPC_HORIZON:
                n_look_ahead = MPC_HORIZON
            elif USE_SHORT_HORIZON_MPC:
                n_look_ahead = min(MPC_HORIZON, N - counter)
            if n_look_ahead == 0:
                break

            start_idx = counter
            end_idx = counter + n_look_ahead

            print("start_idx:", start_idx)
            print("end_idx:", end_idx)
            print("n_look_ahead", n_look_ahead)

            # start_time = time.time()
            # idx of current observation
            idx = episode.get_latest_idx()
            mpc_start_time = time.time()
            mpc_input_data = mpc_input_builder.get_dynamics_model_input(
                idx, n_history=n_history)
            state_cur = mpc_input_data['states']
            action_his = mpc_input_data['actions']

            if SEED_WITH_NOMINAL_ACTIONS:
                action_seq_rollout_init = action_seq_gt_torch[
                    start_idx:end_idx]
            else:
                if mpc_out is not None:
                    action_seq_rollout_init = mpc_out['action_seq'][1:]
                    print("action_seq_rollout_init.shape",
                          action_seq_rollout_init.shape)

                    if action_seq_rollout_init.shape[0] < n_look_ahead:
                        num_steps = n_look_ahead - action_seq_rollout_init.shape[
                            0]
                        action_seq_zero = torch.zeros([num_steps, 2])

                        action_seq_rollout_init = torch.cat(
                            (action_seq_rollout_init, action_seq_zero), dim=0)
                        print("action_seq_rollout_init.shape",
                              action_seq_rollout_init.shape)
                else:
                    action_seq_rollout_init = None

            # run MPPI
            z_cur = None
            with torch.no_grad():
                z_cur = model.compute_z_state(
                    state_cur.unsqueeze(0).cuda())['z'].squeeze(0)

            if action_seq_rollout_init is not None:
                n_look_ahead = action_seq_rollout_init.shape[0]

            obs_goal = None
            print("z_object_rollout_gt.shape", z_object_rollout_gt.shape)
            if TRAJECTORY_GOAL:
                obs_goal = z_object_rollout_gt[start_idx:end_idx]

                print("n_look_ahead", n_look_ahead)
                print("obs_goal.shape", obs_goal.shape)

                # add the final goal state on as needed
                if obs_goal.shape[0] < n_look_ahead:
                    obs_goal_final = z_object_rollout_gt[-1].unsqueeze(0)
                    num_repeat = n_look_ahead - obs_goal.shape[0]
                    obs_goal_final_expand = obs_goal_final.expand(
                        [num_repeat, -1])
                    obs_goal = torch.cat((obs_goal, obs_goal_final_expand),
                                         dim=0)
            else:
                obs_goal = z_object_rollout_gt[-1]

            obs_goal = torch_utils.cast_to_numpy(obs_goal)
            print("obs_goal.shape", obs_goal.shape)

            seed = 1

            set_seed(seed)
            mpc_out = planner.trajectory_optimization(
                state_cur=z_cur,
                action_his=action_his,
                obs_goal=obs_goal,
                model_dy=model,
                action_seq_rollout_init=action_seq_rollout_init,
                n_look_ahead=n_look_ahead,
                eval_indices=object_indices,
                rollout_best_action_sequence=True,
                verbose=True,
                add_grid_action_samples=True,
            )

            print("MPC step took %.4f seconds" %
                  (time.time() - mpc_start_time))
            action_seq_mpc = torch_utils.cast_to_numpy(mpc_out['action_seq'])
            state_pred_mpc = torch_utils.cast_to_numpy(mpc_out['state_pred'])

        # Rollout with ground truth simulator dynamics
        env2.set_simulator_state_from_observation_dict(
            env2.get_mutable_context(), obs_cur)
        obs_mpc_gt = env_utils.rollout_action_sequence(
            env2, action_seq_mpc)['observations']

        vis['mpc_3D'].delete()
        vis['mpc_GT_3D'].delete()

        L = len(obs_mpc_gt)
        print("L", L)
        if L == 0:
            break
        for i in range(L):

            # ground truth rollout of the MPC action_seq
            name = "mpc_GT_3D/%d" % (i)
            T_W_obj = DrakePusherSliderEnv.object_position_from_observation(
                obs_mpc_gt[i])
            vis[name].set_object(triad(scale=0.1))
            vis[name].set_transform(T_W_obj)

        action_cur = action_seq_mpc[0]

        print("action_cur", action_cur)
        print("action_GT", initial_cond['action'])
        input("press Enter to continue")

        # add observation actions to the episode
        obs_cur = env.get_observation()
        episode.replace_observation_action(obs_cur, action_cur)

        # step the simulator
        env.step(action_cur)

        # update the trajectories, in case we aren't replanning
        action_seq_mpc = action_seq_mpc[1:]
        state_pred_mpc = state_pred_mpc[1:]

        pose_error = compute_pose_error(env_obs_rollout_gt[-1], obs_cur)

        print("position_error: %.3f" % (pose_error['position_error']))
        print("angle error degrees: %.3f" %
              (pose_error['angle_error_degrees']))

    obs_final = env.get_observation()

    pose_error = compute_pose_error(env_obs_rollout_gt[-1], obs_final)

    print("position_error: %.3f" % (pose_error['position_error']))
    print("angle error degrees: %.3f" % (pose_error['angle_error_degrees']))
コード例 #24
0
import os
from key_dynam.utils.utils import get_project_root, get_data_root

SIM_ASSETS_ROOT = os.path.join(get_project_root(), 'sim_assets')
block_push = os.path.join(SIM_ASSETS_ROOT, 'block_push.urdf')
extra_heavy_duty_table = os.path.join(SIM_ASSETS_ROOT, "extra_heavy_duty_table_surface_only_collision.sdf")
xy_slide = os.path.join(SIM_ASSETS_ROOT, "xy_slide.urdf")

ycb_model_paths = dict({
    'cracker_box': os.path.join(SIM_ASSETS_ROOT, "cracker_box/003_cracker_box.sdf"),
    'sugar_box': os.path.join(SIM_ASSETS_ROOT, "sugar_box/004_sugar_box.sdf"),
    'tomato_soup_can': os.path.join(SIM_ASSETS_ROOT, "tomato_soup_can/005_tomato_soup_can.sdf"),
    'mustard_bottle': os.path.join(SIM_ASSETS_ROOT, "mustard_bottle/006_mustard_bottle.sdf"),
    'gelatin_box': os.path.join(SIM_ASSETS_ROOT, "gelatin_box/009_gelatin_box.sdf"),
    'potted_meat_can': os.path.join(SIM_ASSETS_ROOT, "potted_meat_can/010_potted_meat_can.sdf")
})

ycb_model_baselink_names = dict({
    'cracker_box': 'base_link_cracker',
    'sugar_box': 'base_link_sugar',
    'tomato_soup_can': 'base_link_soup',
    'mustard_bottle': 'base_link_mustard',
    'gelatin_box': 'base_link_gelatin',
    'potted_meat_can': 'base_link_meat'
})


LARGE_SIM_ASSETS_ROOT = os.path.join(get_data_root(), 'stable/sim_assets')
コード例 #25
0
ファイル: controller.py プロジェクト: planetceres/key_dynam
from key_dynam.utils import utils, torch_utils
from key_dynam.controller.zmq_utils import ZMQServer
from key_dynam.dataset.online_episode_reader import OnlineEpisodeReader
from key_dynam.dataset.mpc_dataset import DynamicsModelInputBuilder
from key_dynam.controller.plan_container import PlanContainer
from key_dynam.dynamics.models_dy import rollout_model, rollout_action_sequences, get_object_and_robot_state_indices
from key_dynam.planner import utils as planner_utils
from key_dynam.utils import meshcat_utils
from key_dynam.experiments.exp_22_push_box_hardware.visualize_dynamics_model import \
    visualize_model_prediction_single_timestep

# dense correspondence
from dense_correspondence_manipulation.utils import meshcat_utils as pdc_meshcat_utils
from dense_correspondence_manipulation.utils.constants import DEPTH_IM_SCALE

PLAN_MSG_FILE = os.path.join(utils.get_project_root(), 'sandbox', 'plan_msg.p')
COMPUTE_CONTROL_ACTION_MSG_FILE = os.path.join(utils.get_project_root(),
                                               'sandbox',
                                               'compute_control_action_msg.p')

SAVE_MESSAGES = True


class ControllerState(Enum):
    STOPPED = 0
    PLAN_READY = 1
    RUNNING = 2


class Controller:
    """
コード例 #26
0
def get_env_config():
    return load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_29_mugs/config.yaml'))
コード例 #27
0
CUDA_VISIBLE_DEVICES = [0]
set_cuda_visible_devices(CUDA_VISIBLE_DEVICES)

config = dict()
config['train'] = dict()
config['train']['train_valid_ratio'] = 0.9


DATASET_NAME = "top_down_rotated"
# DATASET_NAME = "2019-12-05-15-58-48-462834_top_down_rotated_250"
#
# MODEL_NAME = "2019-12-04-01-32-12-010393_top_down_rotated_sigma_5"
# MODEL_NAME = "2019-12-26-20-49-35-944397_dataset_2019-12-05-15-58-48-462834_top_down_rotated_250"
MODEL_NAME = "2019-12-27-22-29-23-359200_dataset_2019-12-05-15-58-48-462834_top_down_rotated_250"

dataset_root = os.path.join(get_project_root(), "data/dev/experiments/05/data", DATASET_NAME)
multi_episode_dict = DrakeSimEpisodeReader.load_dataset(dataset_root)


network_folder = os.path.join(get_project_root(), "data/dev/experiments/05/trained_models", MODEL_NAME)

epoch = 55
iter = 0
model_file = os.path.join(network_folder, "net_dy_epoch_%d_iter_%d_model.pth" %(epoch, iter))
model = torch.load(model_file)
model.cuda()
model = model.eval()

# make this unique
output_dir = os.path.join(get_project_root(), "data/dev/experiments/05/precomputed_descriptor_keypoints", DATASET_NAME, MODEL_NAME, get_current_YYYY_MM_DD_hh_mm_ss_ms())
コード例 #28
0
import os
import pydrake
import time

from dense_correspondence_manipulation.utils.utils import set_cuda_visible_devices

set_cuda_visible_devices([1])

from key_dynam.utils.utils import get_project_root, save_yaml, load_yaml, get_current_YYYY_MM_DD_hh_mm_ss_ms, get_data_root
from key_dynam.transporter.train_transporter import train_transporter
from key_dynam.dense_correspondence.dc_drake_sim_episode_reader import DCDrakeSimEpisodeReader

# project root
PROJECT_ROOT = get_project_root()

# load config
config = load_yaml(
    os.path.join(get_project_root(),
                 "experiments/exp_18_box_on_side/config.yaml"))

# specify the dataset
dataset_name = "dps_box_on_side_600"
config['perception']['dataset_name'] = dataset_name
dataset_name = config['perception']['dataset_name']

config['dataset']['set_epoch_size_to_num_images'] = False
config['dataset']['epoch_size'] = {'train': 6000, 'valid': 300}

# camera_name = "camera_angled"
camera_name = "camera_1_top_down"
コード例 #29
0
def main():
    # load dynamics model
    model_dict = load_model_state_dict()
    model = model_dict['model_dy']
    model_dd = model_dict['model_dd']
    config = model.config

    env_config = load_yaml(os.path.join(get_project_root(), 'experiments/exp_20_mugs/config.yaml'))
    env_config['env']['observation']['depth_int16'] = True
    n_history = config['train']['n_history']

    initial_cond = generate_initial_condition(env_config, push_length=PUSH_LENGTH)
    env_config = initial_cond['config']

    # enable the right observations

    camera_name = model_dict['metadata']['camera_name']
    spatial_descriptor_data = model_dict['spatial_descriptor_data']
    ref_descriptors = spatial_descriptor_data['spatial_descriptors']
    K = ref_descriptors.shape[0]

    ref_descriptors = torch.Tensor(ref_descriptors).cuda()  # put them on the GPU

    print("ref_descriptors\n", ref_descriptors)
    print("ref_descriptors.shape", ref_descriptors.shape)

    # create the environment
    # create the environment
    env = DrakeMugsEnv(env_config)
    env.reset()

    T_world_camera = env.camera_pose(camera_name)
    camera_K_matrix = env.camera_K_matrix(camera_name)

    # create another environment for doing rollouts
    env2 = DrakeMugsEnv(env_config, visualize=False)
    env2.reset()

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.drake_pusher_position_3D(config)
    visual_observation_function = \
        VisualObservationFunctionFactory.descriptor_keypoints_3D(config=config,
                                                                 camera_name=camera_name,
                                                                 model_dd=model_dd,
                                                                 ref_descriptors=ref_descriptors,
                                                                 K_matrix=camera_K_matrix,
                                                                 T_world_camera=T_world_camera,
                                                                 )

    episode = OnlineEpisodeReader()
    mpc_input_builder = DynamicsModelInputBuilder(observation_function=observation_function,
                                                  visual_observation_function=visual_observation_function,
                                                  action_function=action_function,
                                                  episode=episode)

    vis = meshcat_utils.make_default_visualizer_object()
    vis.delete()

    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    obs_init = env.get_observation()

    #### ROLLOUT USING LEARNED MODEL + GROUND TRUTH ACTIONS ############
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    # add just some large number of these
    episode.clear()
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    def goal_func(obs_tmp):
        state_tmp = mpc_input_builder.get_state_input_single_timestep({'observation': obs_tmp})['state']
        return model.compute_z_state(state_tmp.unsqueeze(0))['z_object'].flatten()


    #
    idx = episode.get_latest_idx()
    obs_raw = episode.get_observation(idx)
    z_object_goal = goal_func(obs_raw)
    z_keypoints_init_W = keypoints_3D_from_dynamics_model_output(z_object_goal, K)
    z_keypoints_init_W = torch_utils.cast_to_numpy(z_keypoints_init_W)

    z_keypoints_obj = keypoints_world_frame_to_object_frame(z_keypoints_init_W,
                                                          T_W_obj=slider_pose_from_observation(obs_init))

    color = [1, 0, 0]
    meshcat_utils.visualize_points(vis=vis,
                                   name="keypoints_W",
                                   pts=z_keypoints_init_W,
                                   color=color,
                                   size=0.02,
                                   )

    # input("press Enter to continue")

    # rollout single action sequence using the simulator
    action_sequence_np = torch_utils.cast_to_numpy(initial_cond['action_sequence'])
    N = action_sequence_np.shape[0]
    obs_rollout_gt = env_utils.rollout_action_sequence(env, action_sequence_np)[
        'observations']

    # using the vision model to get "goal" keypoints
    z_object_goal = goal_func(obs_rollout_gt[-1])
    z_object_goal_np = torch_utils.cast_to_numpy(z_object_goal)
    z_keypoints_goal = keypoints_3D_from_dynamics_model_output(z_object_goal, K)
    z_keypoints_goal = torch_utils.cast_to_numpy(z_keypoints_goal)

    # visualize goal keypoints
    color = [0, 1, 0]
    meshcat_utils.visualize_points(vis=vis,
                                   name="goal_keypoints",
                                   pts=z_keypoints_goal,
                                   color=color,
                                   size=0.02,
                                   )

    # input("press Enter to continue")

    #### ROLLOUT USING LEARNED MODEL + GROUND TRUTH ACTIONS ############
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    # add just some large number of these
    episode.clear()
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    # [n_history, state_dim]
    idx = episode.get_latest_idx()

    dyna_net_input = mpc_input_builder.get_dynamics_model_input(idx, n_history=n_history)
    state_init = dyna_net_input['states'].cuda() # [n_history, state_dim]
    action_init = dyna_net_input['actions'] # [n_history, action_dim]


    print("state_init.shape", state_init.shape)
    print("action_init.shape", action_init.shape)


    action_seq_gt_torch = torch_utils.cast_to_torch(initial_cond['action_sequence'])
    action_input = torch.cat((action_init[:(n_history-1)], action_seq_gt_torch), dim=0).cuda()
    print("action_input.shape", action_input.shape)


    # rollout using the ground truth actions and learned model
    # need to add the batch dim to do that
    z_init = model.compute_z_state(state_init)['z']
    rollout_pred = rollout_model(state_init=z_init.unsqueeze(0),
                                 action_seq=action_input.unsqueeze(0),
                                 dynamics_net=model,
                                 compute_debug_data=True)

    state_pred_rollout = rollout_pred['state_pred']

    print("state_pred_rollout.shape", state_pred_rollout.shape)

    for i in range(N):
        # vis GT for now
        name = "GT_3D/%d" % (i)
        T_W_obj = slider_pose_from_observation(obs_rollout_gt[i])
        # print("T_W_obj", T_W_obj)

        # green
        color = np.array([0, 1, 0]) * get_color_intensity(i, N)
        meshcat_utils.visualize_points(vis=vis,
                                       name=name,
                                       pts=z_keypoints_obj,
                                       color=color,
                                       size=0.01,
                                       T=T_W_obj)

        # red
        color = np.array([0, 0, 1]) * get_color_intensity(i, N)
        state_pred = state_pred_rollout[:, i, :]
        pts_pred = keypoints_3D_from_dynamics_model_output(state_pred, K).squeeze()
        pts_pred = pts_pred.detach().cpu().numpy()
        name = "pred_3D/%d" % (i)
        meshcat_utils.visualize_points(vis=vis,
                                       name=name,
                                       pts=pts_pred,
                                       color=color,
                                       size=0.01,
                                       )

    # input("finished visualizing GT rollout\npress Enter to continue")
    index_dict = get_object_and_robot_state_indices(config)
    object_indices = index_dict['object_indices']

    # reset the environment and use the MPC controller to stabilize this
    # now setup the MPC to try to stabilize this . . . .
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    episode.clear()

    # add just some large number of these
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    # input("press Enter to continue")

    # make a planner config
    planner_config = copy.copy(config)
    config_tmp = load_yaml(os.path.join(get_project_root(), 'experiments/drake_pusher_slider/eval_config.yaml'))
    planner_config['mpc'] = config_tmp['mpc']
    planner = None
    if PLANNER_TYPE == "random_shooting":
        planner = RandomShootingPlanner(planner_config)
    elif PLANNER_TYPE == "mppi":
        planner = PlannerMPPI(planner_config)
    else:
        raise ValueError("unknown planner type: %s" % (PLANNER_TYPE))

    mpc_out = None
    action_seq_mpc = None
    state_pred_mpc = None
    counter = -1
    while True:
        counter += 1
        print("\n\n-----Running MPC Optimization: Counter (%d)-------" % (counter))

        obs_cur = env.get_observation()
        episode.add_observation_only(obs_cur)

        if counter == 0 or REPLAN:
            print("replanning")
            ####### Run the MPC ##########

            # [1, state_dim]

            n_look_ahead = N - counter
            if USE_FIXED_MPC_HORIZON:
                n_look_ahead = MPC_HORIZON
            if n_look_ahead == 0:
                break

            # start_time = time.time()
            # idx of current observation
            idx = episode.get_latest_idx()
            mpc_start_time = time.time()
            mpc_input_data = mpc_input_builder.get_dynamics_model_input(idx, n_history=n_history)
            state_cur = mpc_input_data['states']
            action_his = mpc_input_data['actions']

            if mpc_out is not None:
                action_seq_rollout_init = mpc_out['action_seq'][1:]
            else:
                action_seq_rollout_init = None

            # run MPPI
            z_cur = None
            with torch.no_grad():
                z_cur = model.compute_z_state(state_cur.unsqueeze(0).cuda())['z'].squeeze(0)



            mpc_out = planner.trajectory_optimization(state_cur=z_cur,
                                                      action_his=action_his,
                                                      obs_goal=z_object_goal_np,
                                                      model_dy=model,
                                                      action_seq_rollout_init=action_seq_rollout_init,
                                                      n_look_ahead=n_look_ahead,
                                                      eval_indices=object_indices,
                                                      rollout_best_action_sequence=True,
                                                      verbose=True,
                                                      )

            print("MPC step took %.4f seconds" %(time.time() - mpc_start_time))
            action_seq_mpc = mpc_out['action_seq'].cpu().numpy()


        # Rollout with ground truth simulator dynamics
        action_seq_mpc = torch_utils.cast_to_numpy(mpc_out['action_seq'])
        env2.set_simulator_state_from_observation_dict(env2.get_mutable_context(), obs_cur)
        obs_mpc_gt = env_utils.rollout_action_sequence(env2, action_seq_mpc)['observations']
        state_pred_mpc = torch_utils.cast_to_numpy(mpc_out['state_pred'])

        vis['mpc_3D'].delete()
        vis['mpc_GT_3D'].delete()

        L = len(obs_mpc_gt)
        print("L", L)
        if L == 0:
            break
        for i in range(L):
            # red
            color = np.array([1, 0, 0]) * get_color_intensity(i, L)
            state_pred = state_pred_mpc[i, :]
            state_pred = np.expand_dims(state_pred, 0)  # may need to expand dims here
            pts_pred = keypoints_3D_from_dynamics_model_output(state_pred, K).squeeze()
            name = "mpc_3D/%d" % (i)
            meshcat_utils.visualize_points(vis=vis,
                                           name=name,
                                           pts=pts_pred,
                                           color=color,
                                           size=0.01,
                                           )

            # ground truth rollout of the MPC action_seq
            name = "mpc_GT_3D/%d" % (i)
            T_W_obj = slider_pose_from_observation(obs_mpc_gt[i])

            # green
            color = np.array([1, 1, 0]) * get_color_intensity(i, L)
            meshcat_utils.visualize_points(vis=vis,
                                           name=name,
                                           pts=z_keypoints_obj,
                                           color=color,
                                           size=0.01,
                                           T=T_W_obj)

        action_cur = action_seq_mpc[0]

        print("action_cur", action_cur)
        # print("action_GT", initial_cond['action'])
        input("press Enter to continue")

        # add observation actions to the episode
        obs_cur = env.get_observation()
        episode.replace_observation_action(obs_cur, action_cur)

        # step the simulator
        env.step(action_cur)

        # visualize current keypoint positions
        obs_cur = env.get_observation()
        T_W_obj = slider_pose_from_observation(obs_cur)

        # yellow
        color = np.array([1, 1, 0])
        meshcat_utils.visualize_points(vis=vis,
                                       name="keypoint_cur",
                                       pts=z_keypoints_obj,
                                       color=color,
                                       size=0.02,
                                       T=T_W_obj)

        action_seq_mpc = action_seq_mpc[1:]
        state_pred_mpc = state_pred_mpc[1:]

    obs_final = env.get_observation()

    pose_error = compute_pose_error(obs_rollout_gt[-1],
                                    obs_final)

    print("position_error: %.3f"  %(pose_error['position_error']))
    print("angle error degrees: %.3f" %(pose_error['angle_error_degrees']))
コード例 #30
0
def load_model_and_data():
    dataset_name = "push_box_hardware"

    # model_name = "DD_2D/2020-06-24-22-22-58-234812_DD_3D_n_his_2" # this model is actually 3D
    # model_name = "DD_3D/2020-06-25-00-49-29-679042_DD_3D_n_his_2_T_aug"
    # model_name = "DD_3D/2020-06-25-00-39-29-020621_DD_3D_n_his_2"

    model_name = "DD_3D/2020-07-02-17-59-21-362337_DD_3D_n_his_2_T_aug"
    train_dir = "/home/manuelli/data/key_dynam/dev/experiments/22/dataset_push_box_hardware/trained_models/dynamics"

    train_dir = os.path.join(train_dir, model_name)
    ckpt_file = os.path.join(train_dir, "net_best_dy_state_dict.pth")

    config = load_yaml(os.path.join(train_dir, 'config.yaml'))
    state_dict = torch.load(ckpt_file)

    # build dynamics model
    model_dy = build_dynamics_model(config)
    # print("state_dict.keys()", state_dict.keys())
    model_dy.load_state_dict(state_dict)
    model_dy = model_dy.eval()
    model_dy = model_dy.cuda()

    spatial_descriptor_data = load_pickle(
        os.path.join(train_dir, 'spatial_descriptors.p'))
    metadata = load_pickle(os.path.join(train_dir, 'metadata.p'))

    # build dense-descriptor model
    model_dd_file = metadata['model_file']
    model_dd = torch.load(model_dd_file)
    model_dd = model_dd.eval()
    model_dd = model_dd.cuda()

    # load the dataset
    dataset_paths = get_dataset_paths(dataset_name)
    dataset_root = dataset_paths['dataset_root']
    episodes_config = dataset_paths['episodes_config']

    precomputed_vision_data_root = DD_utils.get_precomputed_data_root(
        dataset_name)['precomputed_data_root']

    # descriptor_keypoints_root = os.path.join(precomputed_vision_data_root, 'descriptor_keypoints')
    descriptor_keypoints_root = os.path.join(precomputed_vision_data_root,
                                             'descriptor_keypoints')

    multi_episode_dict = DynamicSpartanEpisodeReader.load_dataset(
        config=config,
        episodes_config=episodes_config,
        episodes_root=dataset_paths['dataset_root'],
        load_image_episode=True,
        precomputed_data_root=descriptor_keypoints_root,
        max_num_episodes=None)

    visual_observation_function = PrecomputedVisualObservationFunctionFactory.function_from_config(
        config,
        keypoint_idx=spatial_descriptor_data['spatial_descriptors_idx'])

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)
    dataset = MultiEpisodeDataset(
        config,
        action_function=action_function,
        observation_function=observation_function,
        episodes=multi_episode_dict,
        visual_observation_function=visual_observation_function,
        phase="valid",  # this means no data augmentation
    )

    #### PLANNER #######
    planner = None
    # make a planner config
    planner_config = copy.copy(model_dy.config)
    config_tmp = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_22_push_box_hardware/config_DD_3D.yaml'))
    planner_config['mpc'] = config_tmp['mpc']
    if PLANNER_TYPE == "random_shooting":
        planner = RandomShootingPlanner(planner_config)
    elif PLANNER_TYPE == "mppi":
        planner = PlannerMPPI(planner_config)
    else:
        raise ValueError("unknown planner type: %s" % (PLANNER_TYPE))

    return {
        "model_dy": model_dy,
        'model_dd': model_dd,
        'dataset': dataset,
        'config': config,
        "multi_episode_dict": multi_episode_dict,
        'spatial_descriptor_data': spatial_descriptor_data,
        'planner': planner,
        'observation_function': observation_function,
        'action_function': action_function,
    }