def get_fixation_unconstrained_quad(S, d): sign_S = numpy.sign(S) D = d * sign_S H = numpy.zeros_like(S) for i in range(H.shape[0]): for j in range(H.shape[1]): H[i, j] = 1. / kimrecessive.denom_quad(0.5 * S[i, j], D[i, j]) return H
def get_fixation_kacser_quad(S, d, log_kb): soft_sign_S = numpy.tanh(numpy.exp(log_kb) * S) D = d * soft_sign_S H = numpy.zeros_like(S) for i in range(H.shape[0]): for j in range(H.shape[1]): H[i, j] = 1. / kimrecessive.denom_quad(0.5 * S[i, j], D[i, j]) return H
def get_fixation_kacser_quad(S, d, log_kb): soft_sign_S = numpy.tanh(numpy.exp(log_kb)*S) D = d * soft_sign_S H = numpy.zeros_like(S) for i in range(H.shape[0]): for j in range(H.shape[1]): H[i, j] = 1. / kimrecessive.denom_quad( 0.5*S[i, j], D[i, j]) return H
def get_fixation_unconstrained_quad(S, d): sign_S = numpy.sign(S) D = d * sign_S H = numpy.zeros_like(S) for i in range(H.shape[0]): for j in range(H.shape[1]): H[i, j] = 1. / kimrecessive.denom_quad( 0.5*S[i, j], D[i, j]) return H
def get_fixation_unconstrained_kb_quad(S, d, log_kb): """ Use numerical quadrature. Do not bother trying to use algopy for this. """ soft_sign_S = numpy.tanh(numpy.exp(log_kb) * S) D = d * soft_sign_S H = numpy.zeros_like(S) for i in range(H.shape[0]): for j in range(H.shape[1]): H[i, j] = 1. / kimrecessive.denom_quad(0.5 * S[i, j], D[i, j]) return H
def get_fixation_unconstrained_kb_quad(S, d, log_kb): """ Use numerical quadrature. Do not bother trying to use algopy for this. """ soft_sign_S = numpy.tanh(numpy.exp(log_kb)*S) D = d * soft_sign_S H = numpy.zeros_like(S) for i in range(H.shape[0]): for j in range(H.shape[1]): H[i, j] = 1. / kimrecessive.denom_quad( 0.5*S[i, j], D[i, j]) return H
def get_relative_error_e3(c, d): x = kimrecessive.denom_quad(c, d) y = kimrecessive.denom_hyp2f0_b(c, d) z = (y-x) / x return refilter(z)
def get_relative_error_d(c, d): x = kimrecessive.denom_quad(c, d) y = kimrecessive.denom_near_genic_combo(c, d) z = (y-x) / x return refilter(z)
def get_relative_error_c(c, d): x = kimrecessive.denom_quad(c, d) y = kimrecessive.denom_piecewise(c, d) z = (y-x) / x return refilter(z)
def get_relative_error_a(c, d): x = kimrecessive.denom_quad(c, d) y = kimrecessive.denom_not_genic(c, d) z = (y-x) / x return refilter(z)
def do_integration_demo(): N = 101 #d = np.linspace(-5, 5, N) / 10000. #c = np.linspace(-100, 100, N) / 10. #d = np.linspace(-5, 5, N) / 3. #c = np.linspace(-100, 100, N) / 3. d = np.linspace(-5, 5, N) c = np.linspace(-100, 100, N) #d = np.linspace(-1, 1, N) * 0.25 #c = np.linspace(-1, 1, N) * 0.02 #d = np.linspace(-3, 3, N) / 10. #c = np.linspace(-30, 30, N) / 10. #d = np.linspace(-3, 3, N) / 10000. #c = np.linspace(-30, 30, N) / 10000. #d = np.linspace(-3, 3, N) #c = np.linspace(-30, 30, N) #d = np.linspace(-4, 4, N) #c = np.linspace(-40, 40, N) #c = np.linspace(-20, 20, N) #d = np.linspace(-.2, .2, N) #c = np.linspace(-100, 100, N) #c = np.linspace(-200, 200, N) #dc, dd = 0.001, 0.001 #c = np.arange(1.-0.05, 1.+0.05, dc) #d = np.arange(1.-0.05, 1.+0.05, dd) ##dc, dd = 0.005, 0.005 ##c = np.arange(0, 0.3, dc) ##d = np.arange(-0.2, 0.2, dd) """ Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_a(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() """ """ Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_b(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() """ """ Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_c(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() """ """ Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_d(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() """ """ Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_e1(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_e2(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_e3(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_e4(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() Z = np.zeros((len(d), len(c))) for j, dj in enumerate(d): for i, ci in enumerate(c): Z[j, i] = get_relative_error_e6(ci, dj) im = plt.imshow(Z, cmap=plt.cm.jet) plt.show() """ Z = np.zeros((len(d), len(c))) W = np.zeros((len(d), len(c))) quad_x, quad_w = kimrecessive.precompute_quadrature(0, 1, 101) for j, dj in enumerate(d): for i, ci in enumerate(c): x = kimrecessive.denom_quad(ci, dj) #y = kimrecessive.denom_poly_b(ci, dj) #y = kimengine.denom_poly(ci, dj) #y = kimrecessive.denom_hyperu_b(ci, dj) #y = kimrecessive.denom_erfcx_b(ci, dj) y = kimrecessive.denom_fixed_quad(ci, dj, quad_x, quad_w) #y = kimrecessive.denom_combo_b(ci, dj) w = abs(y - x) / abs(x) W[j, i] = w Z[j, i] = refilter(w) print numpy.max(W) import matplotlib.pyplot as plt fig = plt.figure() im = plt.imshow(Z, cmap=plt.cm.jet) plt.show()
def get_relative_error_e6(c, d): x = kimrecessive.denom_quad(c, d) y = kimrecessive.denom_combo_b(c, d) z = (y - x) / x return refilter(z)