コード例 #1
0
def gen_dv_cvs(km, constraints, controlled_symbols):
    cvs, constraints = generate_controlled_values(constraints,
                                                  controlled_symbols)
    cvs = depth_weight_controlled_values(km, cvs, exp_factor=2.0)
    print('\n'.join(f'{cv.symbol}: {cv.weight_id}'
                    for _, cv in sorted(cvs.items())))
    return cvs, constraints
コード例 #2
0
    def __init__(self, km,
                       actuated_pose,
                       goal_pose,
                       controlled_symbols,
                       weight_override=None,
                       draw_fn=None):
        
        eef = actuated_pose
        goal_pos_error = gm.norm(gm.pos_of(eef) - gm.pos_of(goal_pose))
        self.eef_rot = eef[:3, :3]
        self.goal_rot = goal_pose[:3, :3]
        self.rot_error_matrix = self.eef_rot - self.goal_rot
        goal_rot_error = gm.norm(self.rot_error_matrix)

        rot_align_scale = gm.exp(-3 * goal_rot_error) 

        goal_constraints = {'align position': SC(-goal_pos_error * rot_align_scale,
                                                 -goal_pos_error * rot_align_scale, 10, goal_pos_error),
                            'align rotation': SC(-goal_rot_error, -goal_rot_error, 1, goal_rot_error)}

        self.goal_rot_error = goal_rot_error

        constraints = km.get_constraints_by_symbols(gm.free_symbols(eef).union(controlled_symbols))
        cvs, constraints = generate_controlled_values(constraints, controlled_symbols, weights=weight_override)
        cvs = depth_weight_controlled_values(km, cvs, exp_factor=1.02)

        self.draw_fn = draw_fn

        self.qp = TQPB(constraints,
                       goal_constraints,
                       cvs)
コード例 #3
0
    def generate_push_controller(self):
        if self.robot is None:
            return

        if self._current_target is None:
            return

        target_symbol = self.target_symbol_map[self._current_target]
        pose_path = self._current_target[len(self.urdf_path):] + ('pose', )
        obj_pose = pose_path.get_data(self.obj)

        joint_symbols = self.robot_joint_symbols.union({target_symbol})
        controlled_symbols = self.robot_controlled_symbols.union(
            {DiffSymbol(target_symbol)})

        # print('Generating push controller for symbols:\n {}'.format('\n '.join([str(s) for s in symbols])))

        hard_constraints, geom_distance, self.geom_world, debug_draw = generate_push_closing(
            self.km,
            self.state,
            controlled_symbols,
            self.robot_eef.pose,
            obj_pose,
            self.robot_eef_path,
            self._current_target,
            'linear',  # 'cross',
            BULLET_FIXED_OFFSET)
        controlled_values, hard_constraints = generate_controlled_values(
            hard_constraints, controlled_symbols)
        controlled_values = depth_weight_controlled_values(self.km,
                                                           controlled_values,
                                                           exp_factor=1.1)
        if isinstance(self.base_joint, DiffDriveJoint):
            controlled_values[str(self.base_joint.l_wheel_vel)].weight = 0.001
            controlled_values[str(self.base_joint.r_wheel_vel)].weight = 0.001

        print('\n'.join(sorted([str(s) for s in geom_distance.free_symbols])))

        cam_to_obj = pos_of(obj_pose) - pos_of(self.robot_camera.pose)
        lookat_dot = 1 - dot_product(self.robot_camera.pose * vector3(1, 0, 0),
                                     cam_to_obj) / norm(cam_to_obj)

        soft_constraints = {
            'reach {}'.format(self._current_target):
            PIDC(geom_distance, geom_distance, 1, k_i=0.02),
            'close {}'.format(self._current_target):
            PIDC(target_symbol, target_symbol, 1, k_i=0.06),
            'lookat {}'.format(self._current_target):
            SC(-lookat_dot, -lookat_dot, 1, lookat_dot)
        }
        self.soft_constraints = soft_constraints

        print('Controlled Values:\n  {}'.format('\n  '.join(
            [str(c) for c in controlled_values.values()])))

        self.pushing_controller = GQPB(self.geom_world,
                                       hard_constraints,
                                       soft_constraints,
                                       controlled_values,
                                       visualizer=self.debug_visualizer)
コード例 #4
0
    def __init__(self, km, controlled_symbols, resting_pose, camera_path=None):
        tucking_constraints = {}
        if resting_pose is not None:
            tucking_constraints = {
                f'tuck {s}': SC(p - s, p - s, 1, s)
                for s, p in resting_pose.items()
            }
            # print('Tuck state:\n  {}\nTucking constraints:\n  {}'.format('\n  '.join(['{}: {}'.format(k, v) for k, v in self._resting_pose.items()]), '\n  '.join(tucking_constraints.keys())))

        # tucking_constraints.update(self.taxi_constraints)

        self.use_camera = camera_path is not None
        if camera_path is not None:
            self._poi_pos = gm.Symbol('poi')
            poi = gm.point3(1.5, 0.5, 0.0) + gm.vector3(
                0, self._poi_pos * 2.0, 0)

            camera = km.get_data(camera_path)
            cam_to_poi = poi - gm.pos_of(camera.pose)
            lookat_dot = 1 - gm.dot_product(gm.x_of(camera.pose),
                                            cam_to_poi) / gm.norm(cam_to_poi)
            tucking_constraints['sweeping gaze'] = SC(-lookat_dot * 5,
                                                      -lookat_dot * 5, 1,
                                                      lookat_dot)

        symbols = set()
        for c in tucking_constraints.values():
            symbols |= gm.free_symbols(c.expr)

        joint_symbols = {
            s
            for s in symbols if gm.get_symbol_type(s) != gm.TYPE_UNKNOWN
        }
        controlled_symbols = {gm.DiffSymbol(s) for s in joint_symbols}

        hard_constraints = km.get_constraints_by_symbols(
            symbols.union(controlled_symbols))

        controlled_values, hard_constraints = generate_controlled_values(
            hard_constraints, controlled_symbols)
        controlled_values = depth_weight_controlled_values(
            km, controlled_values)

        self.qp = TQPB(hard_constraints, tucking_constraints,
                       controlled_values)
        self._start = Time.now()
コード例 #5
0
    def generate_idle_controller(self):
        if self.robot is None:
            return

        tucking_constraints = {}
        if self._resting_pose is not None:
            tucking_constraints = {
                'tuck {}'.format(s): SC(p - s, p - s, 1, s)
                for s, p in self._resting_pose.items()
                if s in self.robot_joint_symbols
            }
            # print('Tuck state:\n  {}\nTucking constraints:\n  {}'.format('\n  '.join(['{}: {}'.format(k, v) for k, v in self._resting_pose.items()]), '\n  '.join(tucking_constraints.keys())))

        tucking_constraints.update(self.taxi_constraints)

        cam_to_poi = self.poi - pos_of(self.robot_camera.pose)
        lookat_dot = 1 - dot_product(self.robot_camera.pose * vector3(1, 0, 0),
                                     cam_to_poi) / norm(cam_to_poi)
        tucking_constraints['sweeping gaze'] = SC(-lookat_dot * 5,
                                                  -lookat_dot * 5, 1,
                                                  lookat_dot)

        symbols = set()
        for c in tucking_constraints.values():
            symbols |= c.expr.free_symbols

        joint_symbols = self.robot_joint_symbols.intersection(symbols)
        controlled_symbols = self.robot_controlled_symbols

        hard_constraints = self.km.get_constraints_by_symbols(
            symbols.union(controlled_symbols))
        self.geom_world = self.km.get_active_geometry(joint_symbols,
                                                      include_static=True)

        controlled_values, hard_constraints = generate_controlled_values(
            hard_constraints, controlled_symbols)
        controlled_values = depth_weight_controlled_values(
            self.km, controlled_values)

        self.idle_controller = GQPB(self.geom_world,
                                    hard_constraints,
                                    tucking_constraints,
                                    controlled_values,
                                    visualizer=self.debug_visualizer)
コード例 #6
0
    def __init__(self,
                 km,
                 actuated_object_path,
                 target_object_path,
                 controlled_symbols,
                 start_state,
                 camera_path=None,
                 navigation_method='cross',
                 visualizer=None,
                 weight_override=None,
                 collision_avoidance_paths=None):
        print(f'{actuated_object_path}\n{target_object_path}')

        actuated_object = km.get_data(actuated_object_path)
        target_object = km.get_data(target_object_path)

        all_controlled_symbols = controlled_symbols.union({
            gm.DiffSymbol(j)
            for j in gm.free_symbols(target_object.pose)
            if 'location' not in str(j)
        })
        static_symbols = {
            s
            for s in gm.free_symbols(target_object.pose)
            if 'location' in str(s)
        }

        # Generate push problem
        constraints, \
        geom_distance, \
        coll_world, \
        self.p_internals = generate_push_closing(km,
                                                 start_state,
                                                 all_controlled_symbols,
                                                 actuated_object.pose,
                                                 target_object.pose,
                                                 actuated_object_path,
                                                 target_object_path,
                                                 navigation_method,
                                                 static_symbols=static_symbols)

        start_state.update({s: 0.0 for s in gm.free_symbols(coll_world)})

        weight_override = {} if weight_override is None else weight_override

        controlled_values, \
        constraints = generate_controlled_values(constraints,
                                                 all_controlled_symbols)
        controlled_values = depth_weight_controlled_values(km,
                                                           controlled_values,
                                                           exp_factor=1.1)

        goal_constraints = {
            'reach_point': PIDC(geom_distance, geom_distance, 1, k_i=0.00)
        }

        for s, w in weight_override.items():
            for cv in controlled_values.values():
                if cv.symbol is s:
                    cv.weight_id = w
                    break

        # CAMERA STUFF
        if camera_path is not None:
            camera = km.get_data(camera_path)
            cam_pos = gm.pos_of(camera.pose)
            cam_to_obj = gm.pos_of(target_object.pose) - cam_pos
            cam_forward = gm.dot(camera.pose, gm.vector3(1, 0, 0))
            look_goal = 1 - (gm.dot_product(cam_to_obj, cam_forward) /
                             gm.norm(cam_to_obj))
            goal_constraints['look_at_obj'] = SC(-look_goal, -look_goal, 1,
                                                 look_goal)

        # GOAL CONSTAINT GENERATION
        # 'avoid_collisions': SC.from_constraint(closest_distance_constraint_world(eef_pose, eef_path[:-1], 0.03), 100)
        # }

        if collision_avoidance_paths is not None:
            for p in collision_avoidance_paths:
                obj = km.get_data(p)
                goal_constraints[f'avoid_collision {p}'] = SC.from_constraint(
                    closest_distance_constraint(actuated_object.pose, obj.pose,
                                                actuated_object_path, p, 0.01),
                    100)

        goal_constraints.update({
            f'open_object_{x}': PIDC(s, s, 1)
            for x, s in enumerate(gm.free_symbols(target_object.pose))
        })

        self.look_goal = look_goal if camera_path is not None else None
        self.in_contact = gm.less_than(geom_distance, 0.01)
        self.controlled_values = controlled_values
        self.geom_distance = geom_distance

        self.qpb = GQPB(coll_world,
                        constraints,
                        goal_constraints,
                        controlled_values,
                        visualizer=visualizer)
        self.qpb._cb_draw = self.p_internals.f_debug_draw
コード例 #7
0
ファイル: debug_sandbox.py プロジェクト: ARoefer/kineverse
            controlled_symbols |= {
                get_diff(x)
                for x in
                [base_joint.x_pos, base_joint.y_pos, base_joint.a_pos]
            }

        constraints = km.get_constraints_by_symbols(
            geom_distance.free_symbols.union(controlled_symbols))
        constraints.update(
            generate_contact_model(robot_cp, controlled_symbols, object_cp,
                                   contact_normal, obj_pose.free_symbols))

        controlled_values, constraints = generate_controlled_values(
            constraints, controlled_symbols)
        controlled_values = depth_weight_controlled_values(km,
                                                           controlled_values,
                                                           exp_factor=1.2)

        print('Controlled values:\n{}'.format('\n'.join(
            [str(x) for x in controlled_values.values()])))
        print('Additional joint constraints:\n{}'.format('\n'.join([
            str(c) for c in constraints.values()
            if c.expr in controlled_symbols
        ])))

        in_contact = less_than(geom_distance, 0.01)

        goal_constraints = {
            'reach_point': PIDC(geom_distance, geom_distance, 1, k_i=0.01),
            'look_at_obj': SC(-look_goal, -look_goal, 1, look_goal)
        }