def test_gpu(): # tensorflow deps = Dependencies(pip=["tensorflow==1.4"]) assert deps.gpu().pip == ["tensorflow-gpu==1.4"] # pytorch deps = Dependencies(conda=["pytorch::pytorch-cpu"]) assert deps.gpu().conda == ["pytorch"] # nothing changed deps = Dependencies(pip=["foo"], conda=["bar"]) assert deps.gpu() == deps.normalized()
def merge_deps(models, dataloaders=None, source="kipoi", vep=False, interpret=False, gpu=False): """Setup the dependencies """ special_envs, only_models = split_models_special_envs(models) deps = Dependencies() # Treat the handcrafted environments differently for special_env in special_envs: from related import from_yaml logger.info("Loading environment definition: {0}".format(special_env)) # Load and merge the handcrafted deps. yaml_path = os.path.join( kipoi.get_source(source).local_path, special_env + ".yaml") if not os.path.exists(yaml_path): raise ValueError( "Environment definition file {0} not found in source {1}". format(yaml_path, source)) with open(yaml_path, "r", encoding="utf-8") as fh: special_env_deps = Dependencies.from_env_dict(from_yaml(fh)) deps = deps.merge(special_env_deps) for model in only_models: logger.info("Loading model: {0} description".format(model)) parsed_source, parsed_model = parse_source_name(source, model) sub_models = list_subcomponents(parsed_model, parsed_source, "model") if len(sub_models) == 0: raise ValueError("Model {0} not found in source {1}".format( parsed_model, parsed_source)) if len(sub_models) > 1: logger.info( "Found {0} models under the model name: {1}. Merging dependencies for all" .format(len(sub_models), parsed_model)) for sub_model in sub_models: model_descr = kipoi.get_model_descr(sub_model, parsed_source) model_dir = kipoi.get_source(parsed_source).get_model_dir( sub_model) deps = deps.merge(model_descr.dependencies) # handle the dataloader=None case if dataloaders is None or not dataloaders: if isinstance(model_descr.default_dataloader, DataLoaderImport): # dataloader specified by the import deps = deps.merge( model_descr.default_dataloader.dependencies) if model_descr.default_dataloader.parse_dependencies: # add dependencies specified in the yaml file # load from the dataloader description if you can try: with cd(model_dir): dataloader_descr = model_descr.default_dataloader.get( ) deps = deps.merge(dataloader_descr.dependencies) except ImportError as e: # package providing the dataloader is not installed yet if model_descr.default_dataloader.defined_as.startswith( "kipoiseq."): logger.info( "kipoiseq not installed. Using default kipoiseq dependencies for the dataloader: {}" .format(model_descr.default_dataloader. defined_as)) deps = deps.merge(KIPOISEQ_DEPS) else: logger.warning( "Unable to extract dataloader description. " "Make sure the package containing the dataloader `{}` is installed" .format(model_descr.default_dataloader. defined_as)) else: dataloader = os.path.normpath( os.path.join(sub_model, str(model_descr.default_dataloader))) logger.info("Inferred dataloader name: {0} from".format( dataloader) + " the model.") dataloader_descr = kipoi.get_dataloader_descr( dataloader, parsed_source) deps = deps.merge(dataloader_descr.dependencies) if dataloaders is not None or dataloaders: for dataloader in dataloaders: parsed_source, parsed_dataloader = parse_source_name( source, dataloader) sub_dataloaders = list_subcomponents(parsed_dataloader, parsed_source, "dataloader") if len(sub_dataloaders) == 0: raise ValueError( "Dataloader: {0} not found in source {1}".format( parsed_dataloader, parsed_source)) if len(sub_dataloaders) > 1: logger.info( "Found {0} dataloaders under the dataloader name: {1}. Merging dependencies for all" .format(len(sub_dataloaders), parsed_dataloader)) for sub_dataloader in sub_dataloaders: dataloader_descr = kipoi.get_dataloader_descr( sub_dataloader, parsed_source) deps = deps.merge(dataloader_descr.dependencies) # add Kipoi to the dependencies deps = KIPOI_DEPS.merge(deps) if vep: # add vep dependencies logger.info("Adding the vep dependencies") deps = VEP_DEPS.merge(deps) if interpret: # add vep dependencies logger.info("Adding the interpret dependencies") deps = INTERPRET_DEPS.merge(deps) if gpu: logger.info("Using gpu-compatible dependencies") deps = deps.gpu() if platform == "darwin": logger.info("Using osx-type dependencies") deps = deps.osx() return deps
def merge_deps(models, dataloaders=None, source="kipoi", vep=False, gpu=False): """Setup the dependencies """ deps = Dependencies() for model in models: logger.info("Loading model: {0} description".format(model)) parsed_source, parsed_model = parse_source_name(source, model) sub_models = list_subcomponents(parsed_model, parsed_source, "model") if len(sub_models) == 0: raise ValueError("Model {0} not found in source {1}".format( parsed_model, parsed_source)) if len(sub_models) > 1: logger.info( "Found {0} models under the model name: {1}. Merging dependencies for all" .format(len(sub_models), parsed_model)) for sub_model in sub_models: model_descr = kipoi.get_model_descr(sub_model, parsed_source) model_dir = kipoi.get_source(parsed_source).get_model_dir( sub_model) deps = deps.merge(model_descr.dependencies) # handle the dataloader=None case if dataloaders is None or not dataloaders: if isinstance(model_descr.default_dataloader, DataLoaderImport): # dataloader specified by the import deps = deps.merge( model_descr.default_dataloader.dependencies) if model_descr.default_dataloader.parse_dependencies: # add dependencies specified in the yaml file # load from the dataloader description if you can try: with cd(model_dir): dataloader_descr = model_descr.default_dataloader.get( ) deps = deps.merge(dataloader_descr.dependencies) except ImportError as e: # package providing the dataloader is not installed yet if model_descr.default_dataloader.defined_as.startswith( "kipoiseq."): logger.info( "kipoiseq not installed. Using default kipoiseq dependencies for the dataloader: {}" .format(model_descr.default_dataloader. defined_as)) deps = deps.merge(KIPOISEQ_DEPS) else: logger.warn( "Unable to extract dataloader description. " "Make sure the package containing the dataloader `{}` is installed" .format(model_descr.default_dataloader. defined_as)) else: dataloader = os.path.normpath( os.path.join(sub_model, str(model_descr.default_dataloader))) logger.info("Inferred dataloader name: {0} from".format( dataloader) + " the model.") dataloader_descr = kipoi.get_dataloader_descr( dataloader, parsed_source) deps = deps.merge(dataloader_descr.dependencies) if dataloaders is not None or dataloaders: for dataloader in dataloaders: parsed_source, parsed_dataloader = parse_source_name( source, dataloader) sub_dataloaders = list_subcomponents(parsed_dataloader, parsed_source, "dataloader") if len(sub_dataloaders) == 0: raise ValueError( "Dataloader: {0} not found in source {1}".format( parsed_dataloader, parsed_source)) if len(sub_dataloaders) > 1: logger.info( "Found {0} dataloaders under the dataloader name: {1}. Merging dependencies for all" .format(len(sub_dataloaders), parsed_dataloader)) for sub_dataloader in sub_dataloaders: dataloader_descr = kipoi.get_dataloader_descr( sub_dataloader, parsed_source) deps = deps.merge(dataloader_descr.dependencies) # add Kipoi to the dependencies deps = KIPOI_DEPS.merge(deps) if vep: # add vep dependencies logger.info("Adding the vep dependencies") deps = VEP_DEPS.merge(deps) if gpu: logger.info("Using gpu-compatible dependencies") deps = deps.gpu() if platform == "darwin": logger.info("Using osx-type dependencies") deps = deps.osx() return deps
def merge_deps(models, dataloaders=None, source="kipoi", vep=False, gpu=False): """Setup the dependencies """ deps = Dependencies() for model in models: logger.info("Loading model: {0} description".format(model)) parsed_source, parsed_model = parse_source_name(source, model) sub_models = list_subcomponents(parsed_model, parsed_source, "model") if len(sub_models) == 0: raise ValueError("Model {0} not found in source {1}".format( parsed_model, parsed_source)) if len(sub_models) > 1: logger.info( "Found {0} models under the model name: {1}. Merging dependencies for all" .format(len(sub_models), parsed_model)) for sub_model in sub_models: model_descr = kipoi.get_model_descr(sub_model, parsed_source) deps = deps.merge(model_descr.dependencies) # handle the dataloader=None case if dataloaders is None or not dataloaders: dataloader = os.path.normpath( os.path.join(sub_model, model_descr.default_dataloader)) logger.info( "Inferred dataloader name: {0} from".format(dataloader) + " the model.") dataloader_descr = kipoi.get_dataloader_descr( dataloader, parsed_source) deps = deps.merge(dataloader_descr.dependencies) if dataloaders is not None or dataloaders: for dataloader in dataloaders: parsed_source, parsed_dataloader = parse_source_name( source, dataloader) sub_dataloaders = list_subcomponents(parsed_dataloader, parsed_source, "dataloader") if len(sub_dataloaders) == 0: raise ValueError( "Dataloader: {0} not found in source {1}".format( parsed_dataloader, parsed_source)) if len(sub_dataloaders) > 1: logger.info( "Found {0} dataloaders under the dataloader name: {1}. Merging dependencies for all" .format(len(sub_dataloaders), parsed_dataloader)) for sub_dataloader in sub_dataloaders: dataloader_descr = kipoi.get_dataloader_descr( sub_dataloader, parsed_source) deps = deps.merge(dataloader_descr.dependencies) # add Kipoi to the dependencies deps = KIPOI_DEPS.merge(deps) if vep: # add vep dependencies logger.info("Adding the vep dependencies") deps = VEP_DEPS.merge(deps) if gpu: logger.info("Using gpu-compatible dependencies") deps = deps.gpu() if platform == "darwin": logger.info("Using osx-type dependencies") deps = deps.osx() return deps