コード例 #1
0
ファイル: tlearn.py プロジェクト: kipoi/manuscript
        "--num_workers",
        type=int,
        default=0,
        help="Number of parallel workers for loading the dataset")
    parser.add_argument('-p',
                        '--patience',
                        default=10,
                        type=int,
                        help='Early stopping patience')
    parser.add_argument(
        '--gpu',
        default=-1,
        type=int,
        help='Which gpu to use. If -1, determine automatically')
    args = parser.parse_args()
    dl_kwargs_train = parse_json_file_str(args.dl_kwargs_train)
    dl_kwargs_eval = parse_json_file_str(args.dl_kwargs_eval)
    if args.add_n_hidden == "":
        hidden = []
    else:
        hidden = [int(x) for x in args.add_n_hidden.split(",")]
    # -------
    odir = Path(args.output)
    odir.mkdir(parents=True, exist_ok=True)

    if args.gpu == -1:
        gpu = GPUtil.getFirstAvailable(attempts=3, includeNan=True)[0]
    else:
        gpu = args.gpu
    create_tf_session(gpu)
コード例 #2
0
def cli_create_mutation_map(command, raw_args):
    """CLI interface to calculate mutation map data 
    """
    assert command == "create_mutation_map"
    parser = argparse.ArgumentParser(
        'kipoi postproc {}'.format(command),
        description='Predict effect of SNVs using ISM.')
    add_model(parser)
    add_dataloader(parser, with_args=True)
    parser.add_argument(
        '-r',
        '--regions_file',
        help='Region definition as VCF or bed file. Not a required input.')
    # TODO - rename path to fpath
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help='Batch size to use in prediction')
    parser.add_argument(
        "-n",
        "--num_workers",
        type=int,
        default=0,
        help="Number of parallel workers for loading the dataset")
    parser.add_argument("-i",
                        "--install_req",
                        action='store_true',
                        help="Install required packages from requirements.txt")
    parser.add_argument(
        '-o',
        '--output',
        required=True,
        help="Output HDF5 file. To be used as input for plotting.")
    parser.add_argument(
        '-s',
        "--scores",
        default="diff",
        nargs="+",
        help=
        "Scoring method to be used. Only scoring methods selected in the model yaml file are"
        "available except for `diff` which is always available. Select scoring function by the"
        "`name` tag defined in the model yaml file.")
    parser.add_argument(
        '-k',
        "--score_kwargs",
        default="",
        nargs="+",
        help=
        "JSON definition of the kwargs for the scoring functions selected in --scores. The "
        "definiton can either be in JSON in the command line or the path of a .json file. The "
        "individual JSONs are expected to be supplied in the same order as the labels defined in "
        "--scores. If the defaults or no arguments should be used define '{}' for that respective "
        "scoring method.")
    parser.add_argument(
        '-l',
        "--seq_length",
        type=int,
        default=None,
        help=
        "Optional parameter: Model input sequence length - necessary if the model does not have a "
        "pre-defined input sequence length.")

    args = parser.parse_args(raw_args)

    # extract args for kipoi.variant_effects.predict_snvs

    dataloader_arguments = parse_json_file_str(args.dataloader_args)

    if args.output is None:
        raise Exception("Output file `--output` has to be set!")

    # --------------------------------------------
    # install args
    if args.install_req:
        kipoi.pipeline.install_model_requirements(args.model,
                                                  args.source,
                                                  and_dataloaders=True)
    # load model & dataloader
    model = kipoi.get_model(args.model, args.source)

    regions_file = os.path.realpath(args.regions_file)
    output = os.path.realpath(args.output)
    with cd(model.source_dir):
        if not os.path.exists(regions_file):
            raise Exception("Regions inputs file does not exist: %s" %
                            args.regions_file)

        # Check that all the folders exist
        file_exists(regions_file, logger)
        dir_exists(os.path.dirname(output), logger)

        if args.dataloader is not None:
            Dl = kipoi.get_dataloader_factory(args.dataloader,
                                              args.dataloader_source)
        else:
            Dl = model.default_dataloader

    if not isinstance(args.scores, list):
        args.scores = [args.scores]

    dts = get_scoring_fns(model, args.scores, args.score_kwargs)

    # Load effect prediction related model info
    model_info = kipoi.postprocessing.variant_effects.ModelInfoExtractor(
        model, Dl)
    manual_seq_len = args.seq_length

    # Select the appropriate region generator and vcf or bed file input
    args.file_format = regions_file.split(".")[-1]
    bed_region_file = None
    vcf_region_file = None
    bed_to_region = None
    vcf_to_region = None
    if args.file_format == "vcf" or regions_file.endswith("vcf.gz"):
        vcf_region_file = regions_file
        if model_info.requires_region_definition:
            # Select the SNV-centered region generator
            vcf_to_region = kipoi.postprocessing.variant_effects.SnvCenteredRg(
                model_info, seq_length=manual_seq_len)
            logger.info('Using variant-centered sequence generation.')
    elif args.file_format == "bed":
        if model_info.requires_region_definition:
            # Select the SNV-centered region generator
            bed_to_region = kipoi.postprocessing.variant_effects.BedOverlappingRg(
                model_info, seq_length=manual_seq_len)
            logger.info('Using bed-file based sequence generation.')
        bed_region_file = regions_file
    else:
        raise Exception("")

    if model_info.use_seq_only_rc:
        logger.info(
            'Model SUPPORTS simple reverse complementation of input DNA sequences.'
        )
    else:
        logger.info(
            'Model DOES NOT support simple reverse complementation of input DNA sequences.'
        )

    from kipoi.postprocessing.variant_effects.mutation_map import _generate_mutation_map
    mdmm = _generate_mutation_map(
        model,
        Dl,
        vcf_fpath=vcf_region_file,
        bed_fpath=bed_region_file,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        dataloader_args=dataloader_arguments,
        vcf_to_region=vcf_to_region,
        bed_to_region=bed_to_region,
        evaluation_function_kwargs={'diff_types': dts},
    )
    mdmm.save_to_file(output)

    logger.info('Successfully generated mutation map data')
コード例 #3
0
def cli_score_variants(command, raw_args):
    """CLI interface to score variants
    """
    # Updated argument names:
    # - scoring -> scores
    # - --vcf_path -> --input_vcf, -i
    # - --out_vcf_fpath -> --output_vcf, -o
    # - --output -> -e, --extra_output
    # - remove - -install_req
    # - scoring_kwargs -> score_kwargs
    AVAILABLE_FORMATS = ["tsv", "hdf5", "h5"]
    assert command == "score_variants"
    parser = argparse.ArgumentParser(
        'kipoi postproc {}'.format(command),
        description='Predict effect of SNVs using ISM.')
    parser.add_argument('model', help='Model name.', nargs="+")
    parser.add_argument(
        '--source',
        default=["kipoi"],
        nargs="+",
        choices=list(kipoi.config.model_sources().keys()),
        help='Model source to use. Specified in ~/.kipoi/config.yaml' +
        " under model_sources. " +
        "'dir' is an additional source referring to the local folder.")
    parser.add_argument(
        '--dataloader',
        nargs="+",
        default=[],
        help="Dataloader name. If not specified, the model's default" +
        "DataLoader will be used")
    parser.add_argument('--dataloader_source',
                        nargs="+",
                        default=["kipoi"],
                        help="Dataloader source")
    parser.add_argument('--dataloader_args',
                        nargs="+",
                        default=[],
                        help="Dataloader arguments either as a json string:" +
                        "'{\"arg1\": 1} or as a file path to a json file")
    parser.add_argument('-i', '--input_vcf', help='Input VCF.')
    parser.add_argument('-o',
                        '--output_vcf',
                        help='Output annotated VCF file path.',
                        default=None)
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help='Batch size to use in prediction')
    parser.add_argument(
        "-n",
        "--num_workers",
        type=int,
        default=0,
        help="Number of parallel workers for loading the dataset")
    parser.add_argument(
        '-r',
        '--restriction_bed',
        default=None,
        help="Regions for prediction can only be subsets of this bed file")
    parser.add_argument(
        '-e',
        '--extra_output',
        required=False,
        help=
        "Additional output file. File format is inferred from the file path ending"
        + ". Available file formats are: {0}".format(
            ",".join(AVAILABLE_FORMATS)))
    parser.add_argument(
        '-s',
        "--scores",
        default="diff",
        nargs="+",
        help=
        "Scoring method to be used. Only scoring methods selected in the model yaml file are"
        "available except for `diff` which is always available. Select scoring function by the"
        "`name` tag defined in the model yaml file.")
    parser.add_argument(
        '-k',
        "--score_kwargs",
        default="",
        nargs="+",
        help=
        "JSON definition of the kwargs for the scoring functions selected in --scoring. The "
        "definiton can either be in JSON in the command line or the path of a .json file. The "
        "individual JSONs are expected to be supplied in the same order as the labels defined in "
        "--scoring. If the defaults or no arguments should be used define '{}' for that respective "
        "scoring method.")
    parser.add_argument(
        '-l',
        "--seq_length",
        type=int,
        nargs="+",
        default=[],
        help=
        "Optional parameter: Model input sequence length - necessary if the model does not have a "
        "pre-defined input sequence length.")
    parser.add_argument(
        '--std_var_id',
        action="store_true",
        help="If set then variant IDs in the annotated"
        " VCF will be replaced with a standardised, unique ID.")

    args = parser.parse_args(raw_args)
    # Make sure all the multi-model arguments like source, dataloader etc. fit together
    _prepare_multi_model_args(args)

    # Check that all the folders exist
    file_exists(args.input_vcf, logger)
    dir_exists(os.path.dirname(args.output_vcf), logger)
    if args.extra_output is not None:
        dir_exists(os.path.dirname(args.extra_output), logger)

        # infer the file format
        args.file_format = args.extra_output.split(".")[-1]
        if args.file_format not in AVAILABLE_FORMATS:
            logger.error("File ending: {0} for file {1} not from {2}".format(
                args.file_format, args.extra_output, AVAILABLE_FORMATS))
            sys.exit(1)

        if args.file_format in ["hdf5", "h5"]:
            # only if hdf5 output is used
            import deepdish

    if not isinstance(args.scores, list):
        args.scores = [args.scores]

    score_kwargs = []
    if len(args.score_kwargs) > 0:
        score_kwargs = args.score_kwargs
        if len(args.scores) >= 1:
            # Check if all scoring functions should be used:
            if args.scores == ["all"]:
                if len(score_kwargs) >= 1:
                    raise ValueError(
                        "`--score_kwargs` cannot be defined in combination will `--scoring all`!"
                    )
            else:
                score_kwargs = [parse_json_file_str(el) for el in score_kwargs]
                if not len(args.score_kwargs) == len(score_kwargs):
                    raise ValueError(
                        "When defining `--score_kwargs` a JSON representation of arguments (or the "
                        "path of a file containing them) must be given for every "
                        "`--scores` function.")

    keep_predictions = args.extra_output is not None

    n_models = len(args.model)

    res = {}
    for model_name, model_source, dataloader, dataloader_source, dataloader_args, seq_length in zip(
            args.model, args.source, args.dataloader, args.dataloader_source,
            args.dataloader_args, args.seq_length):
        model_name_safe = model_name.replace("/", "_")
        output_vcf_model = None
        if args.output_vcf is not None:
            output_vcf_model = args.output_vcf
            # If multiple models are to be analysed then vcfs need renaming.
            if n_models > 1:
                if output_vcf_model.endswith(".vcf"):
                    output_vcf_model = output_vcf_model[:-4]
                output_vcf_model += model_name_safe + ".vcf"

        dataloader_arguments = parse_json_file_str(dataloader_args)

        # --------------------------------------------
        # load model & dataloader
        model = kipoi.get_model(model_name, model_source)

        if dataloader is not None:
            Dl = kipoi.get_dataloader_factory(dataloader, dataloader_source)
        else:
            Dl = model.default_dataloader

        # Load effect prediction related model info
        model_info = kipoi.postprocessing.variant_effects.ModelInfoExtractor(
            model, Dl)

        if model_info.use_seq_only_rc:
            logger.info(
                'Model SUPPORTS simple reverse complementation of input DNA sequences.'
            )
        else:
            logger.info(
                'Model DOES NOT support simple reverse complementation of input DNA sequences.'
            )

        if output_vcf_model is not None:
            logger.info('Annotated VCF will be written to %s.' %
                        str(output_vcf_model))

        res[model_name_safe] = kipoi.postprocessing.variant_effects.score_variants(
            model,
            dataloader_arguments,
            args.input_vcf,
            output_vcf_model,
            scores=args.scores,
            score_kwargs=score_kwargs,
            num_workers=args.num_workers,
            batch_size=args.batch_size,
            seq_length=seq_length,
            std_var_id=args.std_var_id,
            restriction_bed=args.restriction_bed,
            return_predictions=keep_predictions)

    # tabular files
    if keep_predictions:
        if args.file_format in ["tsv"]:
            for model_name in res:
                for i, k in enumerate(res[model_name]):
                    # Remove an old file if it is still there...
                    if i == 0:
                        try:
                            os.unlink(args.extra_output)
                        except Exception:
                            pass
                    with open(args.extra_output, "w") as ofh:
                        ofh.write("KPVEP_%s:%s\n" % (k.upper(), model_name))
                        res[model_name][k].to_csv(args.extra_output,
                                                  sep="\t",
                                                  mode="a")

        if args.file_format in ["hdf5", "h5"]:
            deepdish.io.save(args.extra_output, res)

    logger.info('Successfully predicted samples')
コード例 #4
0
def cli_grad(command, raw_args):
    """CLI interface to predict
    """
    from .main import prepare_batch
    from kipoi.model import GradientMixin
    assert command == "grad"
    from tqdm import tqdm
    parser = argparse.ArgumentParser(
        'kipoi {}'.format(command),
        description='Save gradients and inputs to a hdf5 file.')
    add_model(parser)
    add_dataloader(parser, with_args=True)
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help='Batch size to use in prediction')
    parser.add_argument(
        "-n",
        "--num_workers",
        type=int,
        default=0,
        help="Number of parallel workers for loading the dataset")
    parser.add_argument("-i",
                        "--install_req",
                        action='store_true',
                        help="Install required packages from requirements.txt")
    parser.add_argument(
        "-l",
        "--layer",
        default=None,
        help="Which output layer to use to make the predictions. If specified,"
        +
        "`model.predict_activation_on_batch` will be invoked instead of `model.predict_on_batch`",
        required=False)
    parser.add_argument(
        "--final_layer",
        help=
        "Alternatively to `--layer` this flag can be used to indicate that the last layer should "
        "be used.",
        action='store_true')
    parser.add_argument(
        "--pre_nonlinearity",
        help=
        "Flag indicating that it should checked whether the selected output is post activation "
        "function. If a non-linear activation function is used attempt to use its input. This "
        "feature is not available for all models.",
        action='store_true')
    parser.add_argument(
        "-f",
        "--filter_idx",
        help=
        "Filter index that should be inspected with gradients. If not set all filters will "
        + "be used.",
        default=None)
    parser.add_argument(
        "-a",
        "--avg_func",
        help=
        "Averaging function to be applied across selected filters (`--filter_idx`) in "
        + "layer `--layer`.",
        choices=GradientMixin.allowed_functions,
        default="sum")
    parser.add_argument(
        '--selected_fwd_node',
        help="If the selected layer has multiple inbound connections in "
        "the graph then those can be selected here with an integer "
        "index. Not necessarily supported by all models.",
        default=None,
        type=int)
    parser.add_argument(
        '-o',
        '--output',
        required=True,
        nargs="+",
        help=
        "Output files. File format is inferred from the file path ending. Available file formats are: "
        + ", ".join(["." + k for k in writers.FILE_SUFFIX_MAP]))
    args = parser.parse_args(raw_args)

    dataloader_kwargs = parse_json_file_str(args.dataloader_args)

    # setup the files
    if not isinstance(args.output, list):
        args.output = [args.output]
    for o in args.output:
        ending = o.split('.')[-1]
        if ending not in writers.FILE_SUFFIX_MAP:
            logger.error("File ending: {0} for file {1} not from {2}".format(
                ending, o, writers.FILE_SUFFIX_MAP))
            sys.exit(1)
        dir_exists(os.path.dirname(o), logger)
    # --------------------------------------------
    # install args
    if args.install_req:
        kipoi.pipeline.install_model_requirements(args.model,
                                                  args.source,
                                                  and_dataloaders=True)

    layer = args.layer
    if layer is None and not args.final_layer:
        raise Exception(
            "A layer has to be selected explicitely using `--layer` or implicitely by using the"
            "`--final_layer` flag.")

    # Not a good idea
    # if layer is not None and isint(layer):
    #    logger.warn("Interpreting `--layer` value as integer layer index!")
    #    layer = int(args.layer)

    # load model & dataloader
    model = kipoi.get_model(args.model, args.source)

    if not isinstance(model, GradientMixin):
        raise Exception("Model does not support gradient calculation.")

    if args.dataloader is not None:
        Dl = kipoi.get_dataloader_factory(args.dataloader,
                                          args.dataloader_source)
    else:
        Dl = model.default_dataloader

    dataloader_kwargs = kipoi.pipeline.validate_kwargs(Dl, dataloader_kwargs)
    dl = Dl(**dataloader_kwargs)

    filter_idx_parsed = None
    if args.filter_idx is not None:
        filter_idx_parsed = parse_filter_slice(args.filter_idx)

    # setup batching
    it = dl.batch_iter(batch_size=args.batch_size,
                       num_workers=args.num_workers)

    # Setup the writers
    use_writers = []
    for output in args.output:
        ending = output.split('.')[-1]
        W = writers.FILE_SUFFIX_MAP[ending]
        logger.info("Using {0} for file {1}".format(W.__name__, output))
        if ending == "tsv":
            assert W == writers.TsvBatchWriter
            use_writers.append(
                writers.TsvBatchWriter(file_path=output, nested_sep="/"))
        elif ending == "bed":
            raise Exception("Please use tsv or hdf5 output format.")
        elif ending in ["hdf5", "h5"]:
            assert W == writers.HDF5BatchWriter
            use_writers.append(writers.HDF5BatchWriter(file_path=output))
        else:
            logger.error("Unknown file format: {0}".format(ending))
            sys.exit(1)

    # Loop through the data, make predictions, save the output
    for i, batch in enumerate(tqdm(it)):
        # validate the data schema in the first iteration
        if i == 0 and not Dl.output_schema.compatible_with_batch(batch):
            logger.warn(
                "First batch of data is not compatible with the dataloader schema."
            )

        # make the prediction
        pred_batch = model.input_grad(batch['inputs'],
                                      filter_idx=filter_idx_parsed,
                                      avg_func=args.avg_func,
                                      layer=layer,
                                      final_layer=args.final_layer,
                                      selected_fwd_node=args.selected_fwd_node,
                                      pre_nonlinearity=args.pre_nonlinearity)

        # write out the predictions, metadata (, inputs, targets)
        # always keep the inputs so that input*grad can be generated!
        # output_batch = prepare_batch(batch, pred_batch, keep_inputs=True)
        output_batch = batch
        output_batch["grads"] = pred_batch
        for writer in use_writers:
            writer.batch_write(output_batch)

    for writer in use_writers:
        writer.close()
    logger.info('Done! Gradients stored in {0}'.format(",".join(args.output)))
コード例 #5
0
                        help="Number of workers used to load the data")
    parser.add_argument("--tf",
                        required=True,
                        help="Transcription factor to benchmark")
    parser.add_argument("--output",
                        "-o",
                        required=True,
                        help="Transcription factor to benchmark")
    args = parser.parse_args()

    model = kipoi.get_model(args.model)

    print("Obtaining a batch of data, using {} workers".format(
        args.num_workers))
    dl_kwargs = kipoi.pipeline.validate_kwargs(
        model.default_dataloader, parse_json_file_str(args.dl_kwargs))
    print("Used kwargs: {}".format(dl_kwargs))
    dl = model.default_dataloader(**dl_kwargs)
    # batch = numpy_collate([dl[0]]*args.batch_size)
    it = dl.batch_iter(args.batch_size, num_workers=args.num_workers)
    batch = next(it)

    print("Measuring the forward time pass")
    times = []
    for i in range(args.num_runs):
        start_time = time.time()
        model.predict_on_batch(batch['inputs'])
        duration = time.time() - start_time
        times.append(duration)

    print("Writing results to a json file")
コード例 #6
0
ファイル: postproc.py プロジェクト: pythseq/kipoi
def cli_score_variants(command, raw_args):
    """CLI interface to predict
    """
    AVAILABLE_FORMATS = ["tsv", "hdf5", "h5"]
    import pybedtools
    assert command == "score_variants"
    parser = argparse.ArgumentParser(
        'kipoi postproc {}'.format(command),
        description='Predict effect of SNVs using ISM.')
    add_model(parser)
    add_dataloader(parser, with_args=True)
    parser.add_argument('-v', '--vcf_path', help='Input VCF.')
    # TODO - rename path to fpath
    parser.add_argument('-a',
                        '--out_vcf_fpath',
                        help='Output annotated VCF file path.',
                        default=None)
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help='Batch size to use in prediction')
    parser.add_argument(
        "-n",
        "--num_workers",
        type=int,
        default=0,
        help="Number of parallel workers for loading the dataset")
    parser.add_argument("-i",
                        "--install_req",
                        action='store_true',
                        help="Install required packages from requirements.txt")
    parser.add_argument(
        '-r',
        '--restriction_bed',
        default=None,
        help="Regions for prediction can only be subsets of this bed file")
    parser.add_argument(
        '-o',
        '--output',
        required=False,
        help=
        "Additional output file. File format is inferred from the file path ending"
        + ". Available file formats are: {0}".format(
            ",".join(AVAILABLE_FORMATS)))
    parser.add_argument(
        '-s',
        "--scoring",
        default="diff",
        nargs="+",
        help=
        "Scoring method to be used. Only scoring methods selected in the model yaml file are"
        "available except for `diff` which is always available. Select scoring function by the"
        "`name` tag defined in the model yaml file.")
    parser.add_argument(
        '-k',
        "--scoring_kwargs",
        default="",
        nargs="+",
        help=
        "JSON definition of the kwargs for the scoring functions selected in --scoring. The "
        "definiton can either be in JSON in the command line or the path of a .json file. The "
        "individual JSONs are expected to be supplied in the same order as the labels defined in "
        "--scoring. If the defaults or no arguments should be used define '{}' for that respective "
        "scoring method.")

    args = parser.parse_args(raw_args)

    # extract args for kipoi.variant_effects.predict_snvs
    vcf_path = args.vcf_path
    out_vcf_fpath = args.out_vcf_fpath
    dataloader_arguments = parse_json_file_str(args.dataloader_args)

    # infer the file format
    args.file_format = args.output.split(".")[-1]
    if args.file_format not in AVAILABLE_FORMATS:
        logger.error("File ending: {0} for file {1} not from {2}".format(
            args.file_format, args.output, AVAILABLE_FORMATS))
        sys.exit(1)

    if args.file_format in ["hdf5", "h5"]:
        # only if hdf5 output is used
        import deepdish

    # Check that all the folders exist
    file_exists(args.vcf_path, logger)
    dir_exists(os.path.dirname(args.out_vcf_fpath), logger)
    if args.output is not None:
        dir_exists(os.path.dirname(args.output), logger)
    # --------------------------------------------
    # install args
    if args.install_req:
        kipoi.pipeline.install_model_requirements(args.model,
                                                  args.source,
                                                  and_dataloaders=True)
    # load model & dataloader
    model = kipoi.get_model(args.model, args.source)

    if args.dataloader is not None:
        Dl = kipoi.get_dataloader_factory(args.dataloader,
                                          args.dataloader_source)
    else:
        Dl = model.default_dataloader

    if not os.path.exists(vcf_path):
        raise Exception("VCF file does not exist: %s" % vcf_path)

    if not isinstance(args.scoring, list):
        args.scoring = [args.scoring]

    dts = _get_scoring_fns(model, args.scoring, args.scoring_kwargs)

    # Load effect prediction related model info
    model_info = kipoi.postprocessing.variant_effects.ModelInfoExtractor(
        model, Dl)

    # Select the appropriate region generator
    if args.restriction_bed is not None:
        # Select the restricted SNV-centered region generator
        pbd = pybedtools.BedTool(args.restriction_bed)
        vcf_to_region = kipoi.postprocessing.variant_effects.SnvPosRestrictedRg(
            model_info, pbd)
        logger.info(
            'Restriction bed file defined. Only variants in defined regions will be tested.'
            'Only defined regions will be tested.')
    elif model_info.requires_region_definition:
        # Select the SNV-centered region generator
        vcf_to_region = kipoi.postprocessing.variant_effects.SnvCenteredRg(
            model_info)
        logger.info('Using variant-centered sequence generation.')
    else:
        # No regions can be defined for the given model, VCF overlap will be inferred, hence tabixed VCF is necessary
        vcf_to_region = None
        # Make sure that the vcf is tabixed
        vcf_path = kipoi.postprocessing.variant_effects.ensure_tabixed_vcf(
            vcf_path)
        logger.info(
            'Dataloader does not accept definition of a regions bed-file. Only VCF-variants that lie within'
            'produced regions can be predicted')

    if model_info.use_seq_only_rc:
        logger.info(
            'Model SUPPORTS simple reverse complementation of input DNA sequences.'
        )
    else:
        logger.info(
            'Model DOES NOT support simple reverse complementation of input DNA sequences.'
        )

    # Get a vcf output writer if needed
    if out_vcf_fpath is not None:
        logger.info('Annotated VCF will be written to %s.' %
                    str(out_vcf_fpath))
        vcf_writer = kipoi.postprocessing.variant_effects.VcfWriter(
            model, vcf_path, out_vcf_fpath)
    else:
        vcf_writer = None

    keep_predictions = args.output is not None

    res = kipoi.postprocessing.variant_effects.predict_snvs(
        model,
        Dl,
        vcf_path,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        dataloader_args=dataloader_arguments,
        vcf_to_region=vcf_to_region,
        evaluation_function_kwargs={"diff_types": dts},
        sync_pred_writer=vcf_writer,
        return_predictions=keep_predictions)

    # tabular files
    if args.output is not None:
        if args.file_format in ["tsv"]:
            for i, k in enumerate(res):
                # Remove an old file if it is still there...
                if i == 0:
                    try:
                        os.unlink(args.output)
                    except Exception:
                        pass
                with open(args.output, "w") as ofh:
                    ofh.write("KPVEP_%s\n" % k.upper())
                    res[k].to_csv(args.output, sep="\t", mode="a")

        if args.file_format in ["hdf5", "h5"]:
            deepdish.io.save(args.output, res)

    logger.info('Successfully predicted samples')
コード例 #7
0
ファイル: postproc.py プロジェクト: pythseq/kipoi
def _get_scoring_fns(model, sel_scoring_labels, sel_scoring_kwargs):
    # get the scoring methods according to the model definition
    avail_scoring_fns, avail_scoring_fn_def_args, avail_scoring_fn_names, \
        default_scoring_fns = get_avail_scoring_methods(model)

    errmsg_scoring_kwargs = "When defining `--scoring_kwargs` a JSON representation of arguments (or the path of a" \
                            " file containing them) must be given for every `--scoring` function."

    dts = {}
    if len(sel_scoring_labels) >= 1:
        # Check if all scoring functions should be used:
        if sel_scoring_labels == ["all"]:
            if len(sel_scoring_kwargs) >= 1:
                raise ValueError(
                    "`--scoring_kwargs` cannot be defined in combination will `--scoring all`!"
                )
            for arg_iter, k in enumerate(avail_scoring_fn_names):
                si = avail_scoring_fn_names.index(k)
                # get the default kwargs
                kwargs = avail_scoring_fn_def_args[si]
                if kwargs is None:
                    raise ValueError(
                        "No default kwargs for scoring function: %s"
                        " `--scoring all` cannot be used. "
                        "Please also define `--scoring_kwargs`." % (k))
                # instantiate the scoring fn
                dts[k] = avail_scoring_fns[si](**kwargs)
        else:
            # if -k set check that length matches with -s
            if len(sel_scoring_kwargs) >= 1:
                if not len(sel_scoring_labels) == len(sel_scoring_kwargs):
                    raise ValueError(errmsg_scoring_kwargs)
            for arg_iter, k in enumerate(sel_scoring_labels):
                # if -s set check is available for model
                if k in avail_scoring_fn_names:
                    si = avail_scoring_fn_names.index(k)
                    # get the default kwargs
                    kwargs = avail_scoring_fn_def_args[si]
                    # if the user has set scoring function kwargs then load them here.
                    if len(sel_scoring_kwargs) >= 1:
                        # all the {}s in -k replace by their defaults, if the default is None
                        # raise exception with the corrsponding scoring function label etc.
                        defined_kwargs = parse_json_file_str(
                            sel_scoring_kwargs[si])
                        if len(defined_kwargs) != 0:
                            kwargs = defined_kwargs
                    if kwargs is None:
                        raise ValueError(
                            "No kwargs were given for scoring function %s"
                            " with no defaults but required argmuents. "
                            "Please also define `--scoring_kwargs`." % (k))
                    # instantiate the scoring fn
                    dts[k] = avail_scoring_fns[si](**kwargs)
                else:
                    logger.warn("Cannot choose scoring function %s. "
                                "Model only supports: %s." %
                                (k, str(avail_scoring_fn_names)))
    # if -s not set use all defaults
    elif len(default_scoring_fns) != 0:
        for arg_iter, k in enumerate(default_scoring_fns):
            si = avail_scoring_fn_names.index(k)
            kwargs = avail_scoring_fn_def_args[si]
            dts[k] = avail_scoring_fns[si](**kwargs)

    if len(dts) == 0:
        raise Exception("No scoring method was chosen!")

    return dts
コード例 #8
0
def cli_feature_importance(command, raw_args):
    """CLI interface to predict
    """
    # from .main import prepare_batch
    assert command == "feature_importance"
    parser = argparse.ArgumentParser('kipoi {}'.format(command),
                                     description='Save gradients and inputs to a hdf5 file.')
    add_model(parser)
    add_dataloader(parser, with_args=True)
    parser.add_argument("--imp_score", help="Importance score name", choices=available_importance_scores())
    parser.add_argument("--imp_score_kwargs", help="Importance score kwargs")
    parser.add_argument('--batch_size', type=int, default=32,
                        help='Batch size to use in prediction')
    parser.add_argument("-n", "--num_workers", type=int, default=0,
                        help="Number of parallel workers for loading the dataset")
    # TODO - handle the reference-based importance scores...

    # io
    parser.add_argument('-o', '--output', required=True, nargs="+",
                        help="Output files. File format is inferred from the file path ending. Available file formats are: " +
                             ", ".join(["." + k for k in writers.FILE_SUFFIX_MAP]))
    args = parser.parse_args(raw_args)

    dataloader_kwargs = parse_json_file_str(args.dataloader_args)
    imp_score_kwargs = parse_json_file_str(args.imp_score_kwargs)

    # setup the files
    if not isinstance(args.output, list):
        args.output = [args.output]
    for o in args.output:
        ending = o.split('.')[-1]
        if ending not in writers.FILE_SUFFIX_MAP:
            logger.error("File ending: {0} for file {1} not from {2}".
                         format(ending, o, writers.FILE_SUFFIX_MAP))
            sys.exit(1)
        dir_exists(os.path.dirname(o), logger)
    # --------------------------------------------
    # install args
    if args.install_req:
        kipoi.pipeline.install_model_requirements(args.model,
                                                  args.source,
                                                  and_dataloaders=True)

    # load model & dataloader
    model = kipoi.get_model(args.model, args.source, with_dataloader=args.dataloader is None)

    if args.dataloader is not None:
        Dl = kipoi.get_dataloader_factory(args.dataloader, args.dataloader_source)
    else:
        Dl = model.default_dataloader

    dataloader_kwargs = kipoi.pipeline.validate_kwargs(Dl, dataloader_kwargs)
    dl = Dl(**dataloader_kwargs)

    # get_importance_score
    ImpScore = get_importance_score(args.imp_score)
    if not ImpScore.is_compatible(model):
        raise ValueError("model not compatible with score: {0}".format(args.imp_score))
    impscore = ImpScore(model, **imp_score_kwargs)

    # setup batching
    it = dl.batch_iter(batch_size=args.batch_size,
                       num_workers=args.num_workers)

    # Setup the writers
    use_writers = []
    for output in args.output:
        ending = output.split('.')[-1]
        W = writers.FILE_SUFFIX_MAP[ending]
        logger.info("Using {0} for file {1}".format(W.__name__, output))
        if ending == "tsv":
            assert W == writers.TsvBatchWriter
            use_writers.append(writers.TsvBatchWriter(file_path=output, nested_sep="/"))
        elif ending == "bed":
            raise Exception("Please use tsv or hdf5 output format.")
        elif ending in ["hdf5", "h5"]:
            assert W == writers.HDF5BatchWriter
            use_writers.append(writers.HDF5BatchWriter(file_path=output))
        else:
            logger.error("Unknown file format: {0}".format(ending))
            sys.exit(1)

    # Loop through the data, make predictions, save the output
    for i, batch in enumerate(tqdm(it)):
        # validate the data schema in the first iteration
        if i == 0 and not Dl.output_schema.compatible_with_batch(batch):
            logger.warn("First batch of data is not compatible with the dataloader schema.")

        # make the prediction
        # TODO - handle the reference-based importance scores...
        importance_scores = impscore.score(batch['inputs'])

        # write out the predictions, metadata (, inputs, targets)
        # always keep the inputs so that input*grad can be generated!
        # output_batch = prepare_batch(batch, pred_batch, keep_inputs=True)
        output_batch = batch
        output_batch["importance_scores"] = importance_scores
        for writer in use_writers:
            writer.batch_write(output_batch)

    for writer in use_writers:
        writer.close()
    logger.info('Done! Importance scores stored in {0}'.format(",".join(args.output)))