def buildTab(self): self.background_image = "images/gui_elements/tab_darkblue.png" with open("config/blocks.json") as json_data: blocks_config = json.load(json_data) for tab in blocks_config["tabs"]: #newTab = TabbedPanelItem(text = str(tab["id"])) block_type = str(tab["id"])[0] newTab = TabbedPanelItem() color_tab = [] for color in tab["rgba"]: color_tab.append(color) newTab.background_color = color_tab newLayout = StackLayout(spacing=10) for block in tab["blocks"]: newBlock = Block(block_type, str(block["id"]), str(block["source"])) newLayout.add_widget(newBlock) newTab.content = newLayout self.add_widget(newTab)
def __init__(self, df, security_name, **kwargs): super(Application, self).__init__(**kwargs) self.orientation = 'vertical' tab_panel = TabbedPanel() tab_panel.do_default_tab = False tab_panel.background_color = (7 / 255, 0, 13 / 255, 1) tab_menu = TabbedPanelItem(text="Menu") tab_menu.background_color = (62 / 255, 142 / 255, 222 / 255, 1) tab_chart = TabbedPanelItem(text='Chart') tab_chart.background_color = (62 / 255, 142 / 255, 222 / 255, 1) tab_training = TabbedPanelItem(text='Training') tab_training.background_color = (62 / 255, 142 / 255, 222 / 255, 1) tab_validate = TabbedPanelItem(text='Validate') tab_validate.background_color = (62 / 255, 142 / 255, 222 / 255, 1) tab_future = TabbedPanelItem(text='Prediction') tab_future.background_color = (62 / 255, 142 / 255, 222 / 255, 1) tab_panel.add_widget(tab_menu) tab_panel.add_widget(tab_chart) tab_panel.add_widget(tab_training) tab_panel.add_widget(tab_validate) tab_panel.add_widget(tab_future) tab_menu.bind(on_press=lambda x: change_screen('menu')) chart_layout = FloatLayout() fig = plot_data(df, security_name.upper(), 30, 200) canvas = fig.canvas chart_layout.add_widget(canvas) tab_chart.add_widget(chart_layout) predict_frame = FloatLayout(opacity=1) predict_btn = Button(text='Run Prediction', background_color=(62 / 255, 142 / 255, 222 / 255, 1), font_size=20, pos_hint={ "center_x": 0.5, "bottom": 0 }, size_hint=(0.3, 0.075)) predict_btn.bind(on_press=lambda x: start_predict(df, security_name)) predict_frame.add_widget(predict_btn) chart_layout.add_widget(predict_frame) def start_predict(df, security_name): que = queue.Queue() par_modeling = partial(modeling, security_name=security_name) process = threading.Thread( target=lambda q, arg1: q.put(par_modeling(arg1)), args=(que, df), daemon=True) process.start() Clock.schedule_once( lambda *args: tab_panel.switch_to(tab_training)) train_fig = plt.figure(facecolor='#07000d') train_canvas = train_fig.canvas train_layout = FloatLayout() train_layout.add_widget(train_canvas) tab_training.add_widget(train_layout) if os.path.exists('training.csv'): os.remove('training.csv') def update_plot(fig): train_canvas = fig.canvas train_layout.clear_widgets() train_layout.add_widget(train_canvas) plt.close(fig) # for child in train_layout.children[:1]: # train_layout.remove_widget(child) # Clock.schedule_once(lambda *args: tab_panel.switch_to(tab_training)) def read_training(self): if os.path.exists('training.csv'): loss_df = None try: loss_df = pd.read_csv('training.csv') except Exception as e: print(e) pass if loss_df is not None: train_fig = plot_loss(loss_df) update_plot(train_fig) if not process.is_alive(): Clock.unschedule(read_training) val_fig, future_fig = que.get() val_canvas = val_fig.canvas val_layout = FloatLayout() val_layout.add_widget(val_canvas) tab_validate.add_widget(val_layout) future_canvas = future_fig.canvas future_layout = FloatLayout() future_layout.add_widget(future_canvas) tab_future.add_widget(future_layout) Clock.schedule_once( lambda *args: tab_panel.switch_to(tab_validate)) Clock.schedule_interval(read_training, 0.1) Clock.schedule_once(lambda *args: tab_panel.switch_to(tab_chart)) self.add_widget(tab_panel)