コード例 #1
0
ファイル: test_classifier.py プロジェクト: jairideout/knave
class NaiveBayesClassifierTests(TestCase):
    """Tests for the NaiveBayesClassifier class."""

    def setUp(self):
        """Define some sample data that will be used by the tests."""
        self.ref_seqs1 = StringIO(ref_seqs1)
        self.tax_map1 = StringIO(tax_map1)
        self.training_data1 = StringIO(training_data1)
        self.classifier = NaiveBayesClassifier(ref_seqs_f=self.ref_seqs1,
                                               tax_map_f=self.tax_map1)

        self.ref_seqs_tiny = StringIO(ref_seqs_tiny)
        self.tax_map_tiny = StringIO(tax_map_tiny)
        self.classifier_ws1 = NaiveBayesClassifier(
                ref_seqs_f=self.ref_seqs_tiny, tax_map_f=self.tax_map_tiny,
                WordSize=1)

    def test_init(self):
        """Test raises error on invalid constructor arguments."""
        self.assertRaises(MissingTrainingSetError, NaiveBayesClassifier)

        self.assertRaises(AmbiguousTrainingSetError, NaiveBayesClassifier,
                          ref_seqs_f=self.ref_seqs1, tax_map_f=self.tax_map1,
                          training_data_f=self.training_data1)

    def test_call(self):
        """Test classifying sequences."""
        obs = self.classifier(self.ref_seqs1)
        #self.assertEqual(obs, exp_classifications1)

    def test_calculate_prior_word_probabilities(self):
        """Test calculating probability of seeing words in training set."""
        self.classifier_ws1._calculate_prior_word_probabilities()
        self.assertFloatEqual(self.classifier_ws1._prior_word_probabilities,
                {'A': 0.83333333, 'T': 0.83333333, 'G': 0.5, 'C': 0.16666667})
コード例 #2
0
ファイル: test_classifier.py プロジェクト: jairideout/knave
    def setUp(self):
        """Define some sample data that will be used by the tests."""
        self.ref_seqs1 = StringIO(ref_seqs1)
        self.tax_map1 = StringIO(tax_map1)
        self.training_data1 = StringIO(training_data1)
        self.classifier = NaiveBayesClassifier(ref_seqs_f=self.ref_seqs1,
                                               tax_map_f=self.tax_map1)

        self.ref_seqs_tiny = StringIO(ref_seqs_tiny)
        self.tax_map_tiny = StringIO(tax_map_tiny)
        self.classifier_ws1 = NaiveBayesClassifier(
                ref_seqs_f=self.ref_seqs_tiny, tax_map_f=self.tax_map_tiny,
                WordSize=1)