def test(): parser = argparse.ArgumentParser(description='test similarity service') parser.add_argument('-username', required=True, help='username') parser.add_argument('-password', required=True, help='password') args = parser.parse_args() #api = KnowledgeHubAPI(server='TEST', client_secret='39c644b3-1f23-4d94-a71f-e0fb43ebd760') api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') status = api.login(args.username, args.password) print(status) findings = api.eToxSys().getAllFindings(10)
def main(): parser = argparse.ArgumentParser( description= 'Process parameters for collecting findings from primitive adapter') parser.add_argument('-username', required=True, help='username') parser.add_argument('-password', required=True, help='password') args = parser.parse_args() api = KnowledgeHubAPI(server='TEST', client_secret='39c644b3-1f23-4d94-a71f-e0fb43ebd760') api.login(args.username, args.password) compoundSmile = api.ChemistryService().getSMILESByName('omeprazole') similar_compounds = api.SimilarityService().get(compoundSmile[0]) names = [] smiles = [] similarities = [] if similar_compounds is not None: for similar_compound in similar_compounds: names.append(similar_compound['name']) smiles.append(similar_compound['smiles']) similarities.append(similar_compound['distance']) studies = filterStudies(api.eToxSys().getStudiesByCompoundNames(names)) print(f'Found {len(studies)} studies.') for study in studies: print(study) api.SemanticService().getSocs(studies) otherStudies = [ study for study in studies if study['FINDING']['__soc'] == 'Other' ] print(f'#others:{len(otherStudies)}')
def main(): api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') authenticate(api, 'tester', 'tester') compound_name = 'omeprazole' smiles = translate_compound_to_smiles(api, compound_name) retrieve_similar_compounds(api, smiles, compound_name)
def main(): parser = argparse.ArgumentParser(description='test similarity service') parser.add_argument('-username', required=True, help='username') parser.add_argument('-password', required=True, help='password') args = parser.parse_args() api = KnowledgeHubAPI() api.set_server('DEV') api = KnowledgeHubAPI(server='TEST', client_secret='39c644b3-1f23-4d94-a71f-e0fb43ebd760') api.login('*****@*****.**', 'Crosby99!') status = api.SimilarityService().spaces() print(f'status={status}') omeprazole = 'COc1ccc2[nH]c([S+]([O-])Cc3ncc(C)c(OC)c3C)nc2c1' # omeprazole = 'CCC1=C(C)CN(C(=O)NCCC2=CC=C(C=C2)S(=O)(=O)NC(=O)NC2CCC(C)CC2)C1-Cl' similar_compounds = api.SimilarityService().get(omeprazole) pprint.pprint(similar_compounds)
def test(): parser = argparse.ArgumentParser(description='test similarity service') parser.add_argument('-username', required=True, help='username') parser.add_argument('-password', required=True, help='password') args = parser.parse_args() api = KnowledgeHubAPI() api.set_service('DEV') status = api.login(args.username, args.password) print(status) terms = api.SemanticService().lookup('Terbinafine', 'RxNorm') print(json.dumps(terms, indent=4, sort_keys=True)) #if len(terms['terms']) > 0: #concepts = api.SemanticService().normalize(terms['terms'][0], 'RxNorm') #print(json.dumps(concepts, indent=4, sort_keys=True)) #if len(concepts['concepts']) == 1: compounds = [ "Minoxidil","Estradiol","Anastrozole","Felodipine","Amphetamine",",Adenosine","Azathioprine","Levamisole", #"Zolmitriptan","Lidocaine","Alprazolam","Ropivacaine","Foscarnet","Rimonabant","Remoxipride","Cyclophosphamide", #"Aripiprazole","Bambuterol","Sulfamethoxazole","Rosiglitazone","Clozapine","Budesonide","Omeprazole","Raltitrexed", #"Clonidine","Gefitinib","Ximelagatran","Diazepam","Olanzapine","Zafirlukast","Nifedipine","Indomethacin","Erlotinib", #"Formoterol","Diclofenac","Metoprolol","Enprofylline","Bicalutamide","Chlordiazepoxide","Simvastatin","Ranitidine", #"Ticagrelor","Sulfinpyrazone","Phenylbutazone","Benazepril","Isosorbide Mononitrate","Deferoxamine","Guanfacine", #"Naftifine","Chlorthalidone","Guanethidine","Valproic Acid","Clozapine","Baclofen","Maprotiline","Thioridazine", #"Aminoglutethimide","Bromocriptine","Phentolamine","Amantadine","Thiethylperazine","Pindolol","Lidocaine", #"Linezolid","Prednisolone","Candoxatril","Diazepam","Orlistat","Carprofen","Cilazapril" ]
def setUp(self): super(ServiceTest, self).setUp() api = KnowledgeHubAPI() api.set_server('DEV') api.login(self.username, self.password) self.services = Services( api, 'https://dev.toxhub.etransafe.eu/registry.kh.svc/api/v1')
def main(): parser = argparse.ArgumentParser( description= 'Process parameters for collecting findings from primitive adapter') parser.add_argument('-username', required=True, help='username') parser.add_argument('-password', required=True, help='password') args = parser.parse_args() api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') api.login(args.username, args.password) socs = {} studies = api.eToxSys().getStudiesByCompoundNames(['omeprazole']) #studies = api.eToxSys().getStudiesBySMILES(['COc1ccc2[nH]c([S+]([O-])Cc3ncc(C)c(OC)c3C)nc2c1']) print(f'#studies:{len(studies)}') #print(studies[0]) findings_per_specimen_organ = {} for study in studies: if study['FINDING']['finding'] != None and study['FINDING'][ 'finding'] != 'No abnormalities detected' and len( study['FINDING']['finding']) > 0: specimenOrgans = api.SemanticService().getSocs( study['FINDING']['specimenOrgan']) for specimenOrgan in specimenOrgans: if len(specimenOrgan) > 0: finding = study['FINDING']['specimenOrgan'] if specimenOrgan not in findings_per_specimen_organ: findings_per_specimen_organ[specimenOrgan] = [] if finding not in findings_per_specimen_organ[ specimenOrgan]: findings_per_specimen_organ[specimenOrgan].append( finding) for specimen_organ in findings_per_specimen_organ: print( f'{specimen_organ}: {len(findings_per_specimen_organ[specimen_organ])}' ) for finding in findings_per_specimen_organ[specimen_organ]: print(' ' + finding)
def main(): parser = argparse.ArgumentParser( description= 'Process parameters for collecting findings from primitive adapter') parser.add_argument('-username', required=True, help='username') parser.add_argument('-password', required=True, help='password') parser.add_argument('-host', required=True, help='mysql server') parser.add_argument('-database', required=True, help='mysql database') parser.add_argument('-dbuser', required=True, help='mysql database user') parser.add_argument('-dbpass', required=True, help='mysql database password') parser.add_argument('-drug_mappings', required=False, help='password') args = parser.parse_args() api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') mapper = Mapper(api) status = api.login(args.username, args.password) if status: print('logged in') else: sys.exit(0) if args.drug_mappings is None: drugs = getDrugsMapping(api, getClinicalDatabases(api), getPreclinicalDatabases(api)) else: if os.path.isfile(args.drug_mappings): with open(args.drug_mappings, 'r') as drug_file: drugs = json.loads(drug_file.read()) else: drugs = getDrugsMapping(api, getClinicalDatabases(api), getPreclinicalDatabases(api)) with open(args.drug_mappings, 'x') as drug_file: drug_file.write(json.dumps(drugs)) print(f'#drugs found: {len(drugs.keys())}') db = mysql.connector.connect(host=args.host, database=args.database, username=args.dbuser, password=args.dbpass) ClinicalDatabases = getClinicalDatabases(api) PreclinicalDatabases = getPreclinicalDatabases(api) groups = {} # get first the list of SOCs preclinical_pts = {} clinical_pts = {} for drug in drugs: preclinical_pts[drug] = getPTDrugFindings( db=db, drugInfo=drugs[drug], databases=PreclinicalDatabases.keys(), table='preclinical_meddra') clinical_pts[drug] = getPTDrugFindings( db=db, drugInfo=drugs[drug], databases=ClinicalDatabases.keys(), table='clinical_meddra') c = 0 all_preclinical_clinical_pts = getAllPreClinicalClinicalPTs( db=db, tables=['preclinical_meddra', 'clinical_meddra']) for pt in all_preclinical_clinical_pts: c += 1 print(f'{c}/{len(all_preclinical_clinical_pts)}: {pt}') groups[pt] = {'tp': 0, 'fp': 0, 'fn': 0, 'tn': 0} for drug in drugs: if pt in preclinical_pts[drug]: if pt in clinical_pts[drug]: groups[pt]['tp'] += 1 else: groups[pt]['fp'] += 1 else: if pt in clinical_pts[drug]: groups[pt]['fn'] += 1 else: groups[pt]['tn'] += 1
def main(): api = KnowledgeHubAPI() terms = api.SemanticService().lookup('inflamm', 'HPATH') print(terms)
with st.beta_expander("Click here for explanations"): st.markdown(""" under construction! ... """, unsafe_allow_html=True) session_state = SessionState.get(compoundName="Omeprazole", compoundSmile="", similar_compounds="", compoundIds=[], compoundNames=[], studies={}, df_sim=[]) api = KnowledgeHubAPI() compoundSmile = '' ############1. Translate compound to SMILES using semantic services compoundName = st.text_input("compound name: (e.g. Omeprazole)", value=session_state.compoundName) session_state.compoundName = compoundName if st.button('Retrieve') and len(compoundName) > 0: compound = api.SemanticService().normalize(compoundName, ['RxNorm', 'smiles']) if 'concepts' in compound: for concept in compound['concepts']: if 'vocabularyId' in concept: if concept['vocabularyId'] == 'smiles': # global compoundSmile compoundSmile = concept['conceptCode'] st.text(f'Found SMILES {compoundSmile} for {compoundName}')
from knowledgehub.api import KnowledgeHubAPI api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') api.login('tester', 'tester') compoundSmile = api.ChemicalService().getSMILESByName('omeprazole') print(f'Found SMILES {compoundSmile[0]} for {"omeprazole"}') similar_compounds = api.SimilarityService().get(compoundSmile) print(f'similar compounds:{similar_compounds}')
from knowledgehub.api import KnowledgeHubAPI api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') api.login('tester', 'tester') clinical_cpds = api.Faers().getAllCompounds() + api.ClinicalTrials().getAllCompounds() + api.Medline().getAllCompounds() + api.DailyMed().getAllCompounds()
def main(): parser = argparse.ArgumentParser( description= 'Process parameters for collecting findings from primitive adapter') parser.add_argument('-username', required=True, help='username') parser.add_argument('-password', required=True, help='password') parser.add_argument('-host', required=True, help='mysql server') parser.add_argument('-database', required=True, help='mysql database') parser.add_argument('-dbuser', required=True, help='mysql database user') parser.add_argument('-dbpass', required=True, help='mysql database password') parser.add_argument('-drug_mappings', required=False, help='password') parser.add_argument('-clear', required=False, action='store_true', help='clear database') args = parser.parse_args() api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') mapper = Mapper(api) logged_in = api.login(args.username, args.password) if logged_in: print(f'logged in') else: print(f'not logged in') sys.exit(0) db = mysql.connector.connect(host=args.host, database=args.database, username=args.dbuser, password=args.dbpass) if args.clear: cursor = db.cursor(prepared=True) cursor.execute("DELETE FROM preclinical_meddra") cursor.execute("DELETE FROM clinical_meddra") db.commit() records = [] # retrieve the preclinical records and map them to MedDRA maximum = 0 cursor = db.cursor(prepared=True) cursor.execute( 'SELECT distinct id, findingCode, specimenOrganCode FROM preclinical_findings WHERE mapped > -1' ) for r in cursor.fetchall(): mapped_clinical_findings = mapper.mapToClinical([{ 'findingCode': r[1], 'specimenOrganCode': r[2] }]) preclinical_code = mapper.getKey({ 'findingCode': r[1], 'specimenOrganCode': r[2] }) # find the mapping(s) with the minimal absolute distance values = [ item['distance'] for item in mapped_clinical_findings[preclinical_code] ] if len(values) > 0: minimum = min(values) min_values = [ item for item in mapped_clinical_findings[preclinical_code] if item['distance'] == minimum ] if len(min_values) > maximum: maximum = len(min_values) for min_value in min_values: records.append((r[0], r[1], r[2], min_value['findingCode'], min_value['name'], min_value['distance'])) # store the mappings try: cursor = db.cursor(prepared=True) cursor.executemany( 'INSERT INTO preclinical_meddra (id, findingCode, specimenOrganCode, PTCode, name, distance) VALUES (%s, %s, %s, %s, %s, %s)', records) db.commit() except mysql.connector.errors.InterfaceError as e: print(e) # retrieve the clinical records and store them in the database try: cursor = db.cursor(prepared=True) cursor2 = db.cursor(prepared=True) cursor.execute( 'SELECT distinct id, findingCode, specimenOrganCode, findingCode, finding, mapped FROM clinical_findings WHERE mapped > -1' ) cursor2.executemany( 'INSERT INTO clinical_meddra (id, findingCode, specimenOrganCode, PTCode, name, distance) VALUES (%s, %s, %s, %s, %s, %s)', cursor.fetchall()) db.commit() except mysql.connector.errors.InterfaceError as e: print(e)
""" test how the response from eToxSys looks like """ # api = KnowledgeHubAPI(server='TEST', client_secret='39c644b3-1f23-4d94-a71f-e0fb43ebd760') from knowledgehub.api import KnowledgeHubAPI import sys from Concordance.condordance_utils import getPreclinicalCompounds api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') status = api.login('tester', 'tester') drugs = getPreclinicalCompounds(api) for drug in drugs: print(drug)
from knowledgehub.api import KnowledgeHubAPI api = KnowledgeHubAPI(server='DEV', client_secret='3db5a6d7-4694-48a4-8a2e-e9c30d78f9ab') api.login('tester', 'tester') socs = api.SemanticService().getSocByCode('10000060') print(socs)