def run_cc_net_nmf_clusters_worker(network_mat, spreadsheet_mat, lap_dag,
                                   lap_val, run_parameters, sample):
    """Worker to execute net_nmf_clusters in a single process

    Args:
        network_mat: genes x genes symmetric matrix.
        spreadsheet_mat: genes x samples matrix.
        lap_dag: laplacian matrix component, L = lap_dag - lap_val.
        lap_val: laplacian matrix component, L = lap_dag - lap_val.
        run_parameters: dictionay of run-time parameters.
        sample: each single loop.

    Returns:
        None
    """

    np.random.seed(sample)
    rows_sampling_fraction = run_parameters["rows_sampling_fraction"]
    cols_sampling_fraction = run_parameters["cols_sampling_fraction"]

    spreadsheet_mat,       \
    sample_permutation     = kn.sample_a_matrix( spreadsheet_mat
                                               , rows_sampling_fraction
                                               , cols_sampling_fraction )

    spreadsheet_mat,       \
    iterations             = kn.smooth_matrix_with_rwr(spreadsheet_mat, network_mat, run_parameters)
    spreadsheet_mat = kn.get_quantile_norm_matrix(spreadsheet_mat)

    h_mat = kn.perform_net_nmf(spreadsheet_mat, lap_val, lap_dag,
                               run_parameters)

    save_a_clustering_to_tmp(h_mat, sample_permutation, run_parameters, sample)
コード例 #2
0
def run_nmf(run_parameters):
    """ wrapper: call sequence to perform non-negative matrix factorization and write results.

    Args:
        run_parameters: parameter set dictionary.
    """
    number_of_clusters = run_parameters['number_of_clusters']
    spreadsheet_name_full_path = run_parameters['spreadsheet_name_full_path']

    spreadsheet_df = kn.get_spreadsheet_df(spreadsheet_name_full_path)
    spreadsheet_mat = spreadsheet_df.as_matrix()
    spreadsheet_mat = kn.get_quantile_norm_matrix(spreadsheet_mat)

    h_mat = kn.perform_nmf(spreadsheet_mat, run_parameters)

    linkage_matrix = np.zeros(
        (spreadsheet_mat.shape[1], spreadsheet_mat.shape[1]))
    sample_perm = np.arange(0, spreadsheet_mat.shape[1])
    linkage_matrix = kn.update_linkage_matrix(h_mat, sample_perm,
                                              linkage_matrix)
    labels = kn.perform_kmeans(linkage_matrix, number_of_clusters)

    sample_names = spreadsheet_df.columns
    save_consensus_clustering(linkage_matrix, sample_names, labels,
                              run_parameters)
    save_final_samples_clustering(sample_names, labels, run_parameters)
    save_spreadsheet_and_variance_heatmap(spreadsheet_df, labels,
                                          run_parameters)
コード例 #3
0
def run_cc_nmf(run_parameters):
    """ wrapper: call sequence to perform non-negative matrix factorization with
        consensus clustering and write results.

    Args:
        run_parameters: parameter set dictionary.
    """
    tmp_dir = 'tmp_cc_nmf'
    run_parameters = update_tmp_directory(run_parameters, tmp_dir)

    processing_method = run_parameters['processing_method']
    number_of_bootstraps = run_parameters['number_of_bootstraps']
    number_of_clusters = run_parameters['number_of_clusters']
    spreadsheet_name_full_path = run_parameters['spreadsheet_name_full_path']

    spreadsheet_df = kn.get_spreadsheet_df(spreadsheet_name_full_path)
    spreadsheet_mat = spreadsheet_df.as_matrix()
    spreadsheet_mat = kn.get_quantile_norm_matrix(spreadsheet_mat)
    number_of_samples = spreadsheet_mat.shape[1]

    if processing_method == 'serial':
        for sample in range(0, number_of_bootstraps):
            run_cc_nmf_clusters_worker(spreadsheet_mat, run_parameters, sample)

    elif processing_method == 'parallel':
        find_and_save_cc_nmf_clusters_parallel(spreadsheet_mat, run_parameters,
                                               number_of_bootstraps)

    elif processing_method == 'distribute':
        func_args = [spreadsheet_mat, run_parameters]
        dependency_list = [
            run_cc_nmf_clusters_worker, save_a_clustering_to_tmp,
            dstutil.determine_parallelism_locally
        ]
        dstutil.execute_distribute_computing_job(
            run_parameters['cluster_ip_address'], number_of_bootstraps,
            func_args, find_and_save_cc_nmf_clusters_parallel, dependency_list)
    else:
        raise ValueError('processing_method contains bad value.')

    consensus_matrix = form_consensus_matrix(run_parameters, number_of_samples)
    labels = kn.perform_kmeans(consensus_matrix, number_of_clusters)

    sample_names = spreadsheet_df.columns
    save_consensus_clustering(consensus_matrix, sample_names, labels,
                              run_parameters)
    save_final_samples_clustering(sample_names, labels, run_parameters)
    save_spreadsheet_and_variance_heatmap(spreadsheet_df, labels,
                                          run_parameters)

    kn.remove_dir(run_parameters["tmp_directory"])
def run_net_nmf(run_parameters):
    """ wrapper: call sequence to perform network based stratification and write results.

    Args:
        run_parameters: parameter set dictionary.
    """

    np.random.seed(0)

    number_of_clusters = run_parameters['number_of_clusters']
    gg_network_name_full_path = run_parameters['gg_network_name_full_path']
    spreadsheet_name_full_path = run_parameters['spreadsheet_name_full_path']

    network_mat,               \
    unique_gene_names          = kn.get_sparse_network_matrix(gg_network_name_full_path)
    network_mat = kn.normalize_sparse_mat_by_diagonal(network_mat)
    lap_diag, lap_pos = kn.form_network_laplacian_matrix(network_mat)

    spreadsheet_df = kn.get_spreadsheet_df(spreadsheet_name_full_path)
    spreadsheet_df = kn.update_spreadsheet_df(spreadsheet_df,
                                              unique_gene_names)

    sample_names = spreadsheet_df.columns

    spreadsheet_mat = spreadsheet_df.values
    spreadsheet_mat,           \
    iterations                 = kn.smooth_matrix_with_rwr  (spreadsheet_mat, network_mat, run_parameters)
    spreadsheet_mat = kn.get_quantile_norm_matrix(spreadsheet_mat)

    h_mat = kn.perform_net_nmf(spreadsheet_mat, lap_pos, lap_diag,
                               run_parameters)

    linkage_matrix = np.zeros(
        (spreadsheet_mat.shape[1], spreadsheet_mat.shape[1]))
    sample_perm = np.arange(0, spreadsheet_mat.shape[1])
    linkage_matrix = kn.update_linkage_matrix(h_mat, sample_perm,
                                              linkage_matrix)
    labels = kn.perform_kmeans(linkage_matrix, number_of_clusters)

    distance_matrix = pairwise_distances(
        h_mat.T, n_jobs=-1)  # [n_samples, n_features]. Use all available cores

    save_consensus_clustering(linkage_matrix, sample_names, labels,
                              run_parameters)
    calculate_and_save_silhouette_scores(distance_matrix, sample_names, labels,
                                         run_parameters)
    save_final_samples_clustering(sample_names, labels, run_parameters)
    save_spreadsheet_and_variance_heatmap(spreadsheet_df, labels,
                                          run_parameters)
def run_nmf(run_parameters):
    """ wrapper: call sequence to perform non-negative matrix factorization and write results.

    Args:
        run_parameters: parameter set dictionary.
    """

    np.random.seed(0)

    number_of_clusters = run_parameters['number_of_clusters']
    spreadsheet_name_full_path = run_parameters['spreadsheet_name_full_path']

    spreadsheet_df = kn.get_spreadsheet_df(spreadsheet_name_full_path)

    spreadsheet_mat = spreadsheet_df.values
    spreadsheet_mat = kn.get_quantile_norm_matrix(spreadsheet_mat)

    h_mat = kn.perform_nmf(spreadsheet_mat, run_parameters)

    linkage_matrix = np.zeros(
        (spreadsheet_mat.shape[1], spreadsheet_mat.shape[1]))
    sample_perm = np.arange(0, spreadsheet_mat.shape[1])
    linkage_matrix = kn.update_linkage_matrix(h_mat, sample_perm,
                                              linkage_matrix)

    labels = kn.perform_kmeans(linkage_matrix, number_of_clusters)

    sample_names = spreadsheet_df.columns

    distance_matrix = pairwise_distances(
        h_mat.T, n_jobs=-1)  # [n_samples, n_features]  use all available cores

    save_consensus_clustering(linkage_matrix, sample_names, labels,
                              run_parameters)
    calculate_and_save_silhouette_scores(distance_matrix, sample_names, labels,
                                         run_parameters)
    save_final_samples_clustering(sample_names, labels, run_parameters)
    save_spreadsheet_and_variance_heatmap(spreadsheet_df, labels,
                                          run_parameters)
    def test_get_quantile_norm_matrix(self):
        a = np.array([[7.0, 5.0], [3.0, 1.0], [1.0, 7.0]])
        aQN = np.array([[7.0, 4.0], [4.0, 1.0], [1.0, 7.0]])
        qn1 = kn.get_quantile_norm_matrix(a)

        self.assertEqual(sum(sum(qn1 != aQN)), 0, 'Quantile Norm 1 Not Equal')