コード例 #1
0
ファイル: train_model.py プロジェクト: DHMC-EDIT/PathPretrain
def generate_kornia_transforms(image_size=224,
                               resize=256,
                               mean=[],
                               std=[],
                               include_jitter=False):
    mean = torch.tensor(mean) if mean else torch.tensor([0.5, 0.5, 0.5])
    std = torch.tensor(std) if std else torch.tensor([0.1, 0.1, 0.1])
    if torch.cuda.is_available():
        mean = mean.cuda()
        std = std.cuda()
    train_transforms = [G.Resize((resize, resize))]
    if include_jitter:
        train_transforms.append(
            K.ColorJitter(brightness=0.4,
                          contrast=0.4,
                          saturation=0.4,
                          hue=0.1))
    train_transforms.extend([
        K.RandomHorizontalFlip(p=0.5),
        K.RandomVerticalFlip(p=0.5),
        K.RandomRotation(90),
        K.RandomResizedCrop((image_size, image_size)),
        K.Normalize(mean, std)
    ])
    val_transforms = [
        G.Resize((resize, resize)),
        K.CenterCrop((image_size, image_size)),
        K.Normalize(mean, std)
    ]
    transforms = dict(train=nn.Sequential(*train_transforms),
                      val=nn.Sequential(*val_transforms))
    if torch.cuda.is_available():
        for k in transforms:
            transforms[k] = transforms[k].cuda()
    return transforms
コード例 #2
0
    def test_random_crops_and_flips(self, device, dtype):
        width, height = 100, 100
        crop_width, crop_height = 3, 3
        input = torch.randn(3, 3, width, height, device=device, dtype=dtype)
        bbox = torch.tensor([[[1.0, 1.0, 2.0, 2.0], [0.0, 0.0, 1.0, 2.0],
                              [0.0, 0.0, 2.0, 1.0]]],
                            device=device,
                            dtype=dtype).expand(3, -1, -1)
        aug = K.AugmentationSequential(
            K.RandomCrop((crop_width, crop_height),
                         padding=1,
                         cropping_mode='resample',
                         fill=0),
            K.RandomHorizontalFlip(p=1.0),
            data_keys=["input", "bbox_xyxy"],
        )

        reproducibility_test((input, bbox), aug)

        _params = aug.forward_parameters(input.shape)
        # specifying the crop locations allows us to compute by hand the expected outputs
        crop_locations = torch.tensor(
            [[1.0, 2.0], [1.0, 1.0], [2.0, 0.0]],
            device=_params[0].data['src'].device,
            dtype=_params[0].data['src'].dtype,
        )
        crops = crop_locations.expand(4, -1, -1).permute(1, 0, 2).clone()
        crops[:, 1:3, 0] += crop_width - 1
        crops[:, 2:4, 1] += crop_height - 1
        _params[0].data['src'] = crops

        # expected output bboxes after crop for specified crop locations and crop size (3,3)
        expected_out_bbox = torch.tensor(
            [
                [[1.0, 0.0, 2.0, 1.0], [0.0, -1.0, 1.0, 1.0],
                 [0.0, -1.0, 2.0, 0.0]],
                [[1.0, 1.0, 2.0, 2.0], [0.0, 0.0, 1.0, 2.0],
                 [0.0, 0.0, 2.0, 1.0]],
                [[0.0, 2.0, 1.0, 3.0], [-1.0, 1.0, 0.0, 3.0],
                 [-1.0, 1.0, 1.0, 2.0]],
            ],
            device=device,
            dtype=dtype,
        )
        # horizontally flip boxes based on crop width
        xmins = expected_out_bbox[..., 0].clone()
        xmaxs = expected_out_bbox[..., 2].clone()
        expected_out_bbox[..., 0] = crop_width - xmaxs
        expected_out_bbox[..., 2] = crop_width - xmins

        out = aug(input, bbox, params=_params)
        assert out[1].shape == bbox.shape
        assert_close(out[1], expected_out_bbox, atol=1e-4, rtol=1e-4)

        out_inv = aug.inverse(*out)
        assert out_inv[1].shape == bbox.shape
        assert_close(out_inv[1], bbox, atol=1e-4, rtol=1e-4)
コード例 #3
0
    def __init__(
        self,
        net,
        image_size,
        hidden_layer=-2,
        project_hidden=True,
        project_dim=128,
        augment_both=True,
        use_nt_xent_loss=False,
        augment_fn=None,
        use_bilinear=False,
        use_momentum=False,
        momentum_value=0.999,
        key_encoder=None,
        temperature=0.1,
        fp16=False,
    ):
        super().__init__()
        self.net = OutputHiddenLayer(net, layer=hidden_layer)

        DEFAULT_AUG = nn.Sequential(
            RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
            augs.RandomGrayscale(p=0.2),
            augs.RandomHorizontalFlip(),
            RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
            augs.RandomResizedCrop((image_size, image_size)),
        )

        self.augment = default(augment_fn, DEFAULT_AUG)

        self.augment_both = augment_both

        self.temperature = temperature
        self.use_nt_xent_loss = use_nt_xent_loss

        self.project_hidden = project_hidden
        self.projection = None
        self.project_dim = project_dim

        self.use_bilinear = use_bilinear
        self.bilinear_w = None

        self.use_momentum = use_momentum
        self.ema_updater = EMA(momentum_value)
        self.key_encoder = key_encoder

        # for accumulating queries and keys across calls
        self.queries = None
        self.keys = None

        self.fp16 = fp16

        # send a mock image tensor to instantiate parameters
        init = torch.randn(1, 3, image_size, image_size, device="cuda")
        if self.fp16:
            init = init.half()
        self.forward(init)
 def __init__(self, opt):
     super(PostTensorTransform, self).__init__()
     self.random_crop = ProbTransform(A.RandomCrop(
         (opt.input_height, opt.input_width), padding=opt.random_crop),
                                      p=0.8)
     self.random_rotation = ProbTransform(A.RandomRotation(
         opt.random_rotation),
                                          p=0.5)
     if opt.dataset == "cifar10":
         self.random_horizontal_flip = A.RandomHorizontalFlip(p=0.5)
コード例 #5
0
 def __init__(self, im_size=224, device=torch.device('cuda:0')):
     super().__init__()
     self.mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
     self.std = torch.tensor([0.229, 0.224, 0.225]).to(device)
     self.aug = torch.nn.Sequential(
         kornia.geometry.transform.Resize(int(im_size * 1.2)),
         Kaug.RandomCrop((im_size, im_size), padding=8),
         Kaug.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
         Kaug.RandomHorizontalFlip(),
         Kaug.Normalize(mean=self.mean, std=self.std))
コード例 #6
0
 def __init__(self, cutn):
     super().__init__()
     self.cutn = cutn
     self.augs = nn.Sequential(
         K.RandomHorizontalFlip(p=0.5),
         K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
         #K.RandomSolarize(0.01, 0.01, p=0.7),
         K.RandomSharpness(0.3, p=0.4),
         K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
         K.RandomPerspective(0.2, p=0.4), )
     self.noise_fac = 0.1
    def __init__(
        self,
        net,
        image_size,
        hidden_layer = -2,
        projection_size = 256,
        projection_hidden_size = 2048,
        augment_fn = None,
        augment_fn2 = None,
        moving_average_decay = 0.99,
        ppm_num_layers = 1,
        ppm_gamma = 2,
        distance_thres = 0.1, # the paper uses 0.7, but that leads to nearly all positive hits. need clarification on how the coordinates are normalized before distance calculation.
        similarity_temperature = 0.3,
        alpha = 1.
    ):
        super().__init__()

        # default SimCLR augmentation

        DEFAULT_AUG = nn.Sequential(
            RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
            augs.RandomGrayscale(p=0.2),
            augs.RandomHorizontalFlip(),
            RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
            augs.RandomResizedCrop((image_size, image_size)),
            augs.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225]))
        )

        self.augment1 = default(augment_fn, DEFAULT_AUG)
        self.augment2 = default(augment_fn2, self.augment1)

        self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer)

        self.target_encoder = None
        self.target_ema_updater = EMA(moving_average_decay)

        self.distance_thres = distance_thres
        self.similarity_temperature = similarity_temperature
        self.alpha = alpha

        self.propagate_pixels = PPM(
            chan = projection_size,
            num_layers = ppm_num_layers,
            gamma = ppm_gamma
        )

        # get device of network and make wrapper same device
        device = get_module_device(net)
        self.to(device)

        # send a mock image tensor to instantiate singleton parameters
        self.forward(torch.randn(2, 3, image_size, image_size, device=device))
コード例 #8
0
def default_aug(image_size: Tuple[int, int] = (360, 360)) -> nn.Module:
    return nn.Sequential(
        aug.ColorJitter(contrast=0.1, brightness=0.1, saturation=0.1, p=0.8),
        aug.RandomVerticalFlip(),
        aug.RandomHorizontalFlip(),
        RandomApply(filters.GaussianBlur2d((3, 3), (0.5, 0.5)), p=0.1),
        aug.RandomResizedCrop(size=image_size, scale=(0.5, 1)),
        aug.Normalize(
            mean=torch.tensor([0.485, 0.456, 0.406]),
            std=torch.tensor([0.229, 0.224, 0.225]),
        ),
    )
コード例 #9
0
ファイル: utils.py プロジェクト: jhvics1/byol
def default_augmentation(image_size: Tuple[int, int] = (224, 224)) -> nn.Module:
    return nn.Sequential(
        tf.Resize(size=image_size),
        RandomApply(aug.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
        aug.RandomGrayscale(p=0.2),
        aug.RandomHorizontalFlip(),
        RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
        aug.RandomResizedCrop(size=image_size),
        aug.Normalize(
            mean=torch.tensor([0.485, 0.456, 0.406]),
            std=torch.tensor([0.229, 0.224, 0.225]),
        ),
    )
コード例 #10
0
 def __init__(self, opt):
     super().__init__()
     self.wrapped_dataset = create_dataset(opt['dataset'])
     self.cropped_img_size = opt['crop_size']
     self.includes_labels = opt['includes_labels']
     augmentations = [ \
         RandomApply(augs.ColorJitter(0.4, 0.4, 0.4, 0.2), p=0.8),
         augs.RandomGrayscale(p=0.2),
         RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1)]
     self.aug = nn.Sequential(*augmentations)
     self.rrc = nn.Sequential(*[
         augs.RandomHorizontalFlip(),
         augs.RandomResizedCrop((self.cropped_img_size,
                                 self.cropped_img_size))
     ])
コード例 #11
0
 def __init__(self, viz: bool = False):
     super().__init__()
     self.viz = viz
     '''self.geometric = [
         K.augmentation.RandomAffine(60., p=0.75),
     ]'''
     self.augmentations = nn.Sequential(
         augmentation.RandomRotation(degrees=30.),
         augmentation.RandomPerspective(distortion_scale=0.4),
         augmentation.RandomResizedCrop((224, 224)),
         augmentation.RandomHorizontalFlip(p=0.5),
         augmentation.RandomVerticalFlip(p=0.5),
         # K.augmentation.GaussianBlur((3, 3), (0.1, 2.0), p=1.0),
         # K.augmentation.ColorJitter(0.01, 0.01, 0.01, 0.01, p=0.25),
     )
     self.denorm = augmentation.Denormalize(Tensor(DATASET_IMAGE_MEAN), Tensor(DATASET_IMAGE_STD))
コード例 #12
0
    def __init__(self,
                 celeba_folder,
                 mask_folder,
                 mode="train",
                 use_transforms=False):
        super().__init__()
        self.images = []
        self.labels = []
        self.mode = mode
        self.mask_folder = mask_folder

        self.crop_aug = K.RandomCrop((218, 178), pad_if_needed=True)
        self.flip_aug = K.RandomHorizontalFlip()

        self.id_map = {}
        with open(celeba_folder + "/identity_CelebA.txt") as id_f:
            for line in id_f:
                im, id = line.split()
                self.id_map[im[:-4]] = int(id)

        with open(celeba_folder + "/labels/list_attr_celeba.txt") as label_f:
            id_count = label_f.readline().strip("\n")
            self.attributes = np.array(label_f.readline().strip("\n").split())

            for i, line in enumerate(label_f.read().split("\n")[:-1]):
                image_data = line.split()
                image = image_data[0]

                if not os.path.exists(f"{mask_folder}"
                                      f"/id-{self.id_map[image[:-4]]}"):
                    continue

                image_labels = [int(label) for label in image_data[1:]]

                image_n = int(image[:-4])
                train_cond = mode == "train" and image_n < 162771
                val_cond = mode == "val" and image_n >= 162771 and image_n < 182638
                test_cond = mode == "test" and image_n >= 182638
                full_cond = mode == "full"
                if train_cond or val_cond or test_cond or full_cond:
                    self.images.append(celeba_folder + "/images/" + image)
                    self.labels.append(image_labels)

        self.alt_background = TF.to_tensor(Image.open("unicorn.jpg"))

        self.length = len(self.images)
コード例 #13
0
 def __init__(self, model, imageSize, embeddingLayer=-2, projectionDim=256, projectionHiddenDim=4096, emaDecay=0.99):
     super(BYOL, self).__init__()
     
     # Default SimCLR augmentations
     self.augment = nn.Sequential(
         RandomApply(augmentation.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
         augmentation.RandomGrayscale(p=0.2),
         augmentation.RandomHorizontalFlip(),
         RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
         augmentation.RandomResizedCrop((imageSize, imageSize)),
         color.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225]))
     )
     
     # Initialize models, predictors and EMA
     self.onlineEncoder = ModelWrapper(model, projectionDim, projectionHiddenDim, embeddingLayer)
     self.onlinePredictor = MLP(projectionDim, projectionDim, projectionHiddenDim)
     self.targetEncoder = copy.deepcopy(self.onlineEncoder)
     self.targetEMA = EMA(emaDecay)
コード例 #14
0
    def __init__(self, model_name, n_out):
        super(AudioClassifier, self).__init__()

        # Spec augmenter
        self.spec_augmenter = SpecAugmentation(time_drop_width=80, time_stripes_num=2,
                                               freq_drop_width=16, freq_stripes_num=2)
        self.net = timm.create_model(model_name, pretrained=True, in_chans=1)
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout1 = nn.Dropout(0.3)
        self.dropout2 = nn.Dropout(0.3)
        n_features = self.net.classifier.in_features
        self.net_classifier = nn.Linear(n_features, n_out)
        self.init_weight()

        # korrniaのrandom cropはh,wを想定しているため注意
        self.transform = nn.Sequential(K.RandomHorizontalFlip(p=0.1),
                                       # K.GaussianBlur(7, p=0.5),
                                       # K.RandomCrop((round(IMAGE_HEIGHT*0.7), round(IMAGE_WIDTH*0.7)),p=0.3)
                                       )
    def __init__(self,
                 net,
                 image_size=32,
                 layer_name_list=[-2],
                 projection_size=256,
                 projection_hidden_size=4096,
                 augment_fn=None,
                 moving_average_decay=0.99,
                 device_='cuda',
                 number_of_classes=10,
                 mean_data=torch.tensor([0.485, 0.456, 0.406]),
                 std_data=torch.tensor([0.229, 0.224, 0.225])):
        super().__init__()

        # default SimCLR augmentation

        DEFAULT_AUG = nn.Sequential(
            RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
            augs.RandomGrayscale(p=0.2), augs.RandomHorizontalFlip(),
            RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
            augs.RandomResizedCrop((image_size, image_size)),
            augs.Normalize(mean=mean_data, std=std_data))

        self.augment = default(augment_fn, DEFAULT_AUG)
        self.device = device_

        self.online_encoder = NetWrapper(net,
                                         projection_size,
                                         projection_hidden_size,
                                         layer_name_list=layer_name_list).to(
                                             self.device)
        self.target_encoder = None
        self.target_ema_updater = EMA(moving_average_decay)

        self.online_predictor = MLP(projection_size, projection_size,
                                    projection_hidden_size).to(self.device)
        self.online_predictor1 = MLP(projection_size, projection_size,
                                     512).to(self.device)
        self.online_predictor2 = MLP(projection_size, projection_size,
                                     512).to(self.device)

        # send a mock image tensor to instantiate singleton parameters
        self.forward(torch.randn(2, 3, image_size, image_size).to(self.device))
コード例 #16
0
    def __init__(self, utes, mask, ct, length, opt):
        super(TrainDataset, self).__init__()

        self.utes = utes
        self.label = ct
        self.mask = mask
        self.length = length
        self.num_vols = utes.shape[0]

        self.batch_size = opt.trainBatchSize

        self.spatial = nn.Sequential(
            ka.RandomAffine(45,
                            translate=(0.1, 0.1),
                            scale=(0.85, 1.15),
                            shear=(0.1, 0.1),
                            same_on_batch=True),
            ka.RandomVerticalFlip(same_on_batch=True),
            ka.RandomHorizontalFlip(same_on_batch=True))
        self.dim = 2
        self.counter = 0
コード例 #17
0
    def __init__(
        self,
        net,
        image_size,
        hidden_layer=-2,
        projection_size=256,
        projection_hidden_size=4096,
        moving_average_decay=0.99,
        use_momentum=True,
        structural_mlp=False,
    ):
        super().__init__()

        self.online_encoder = NetWrapper(net,
                                         projection_size,
                                         projection_hidden_size,
                                         layer=hidden_layer,
                                         use_structural_mlp=structural_mlp)

        augmentations = [ \
            RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
            augs.RandomGrayscale(p=0.2),
            augs.RandomHorizontalFlip(),
            RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
            augs.RandomResizedCrop((image_size, image_size))]
        self.aug = nn.Sequential(*augmentations)
        self.use_momentum = use_momentum
        self.target_encoder = None
        self.target_ema_updater = EMA(moving_average_decay)

        self.online_predictor = MLP(projection_size, projection_size,
                                    projection_hidden_size)

        # get device of network and make wrapper same device
        device = get_module_device(net)
        self.to(device)

        # send a mock image tensor to instantiate singleton parameters
        self.forward(torch.randn(2, 3, image_size, image_size, device=device),
                     torch.randn(2, 3, image_size, image_size, device=device))
コード例 #18
0
    def __init__(self,
                 net,
                 image_size,
                 hidden_layer=-2,
                 projection_size=256,
                 projection_hidden_size=4096,
                 augment_fn=None,
                 augment_fn2=None,
                 moving_average_decay=0.99):
        super().__init__()

        # default SimCLR augmentation

        DEFAULT_AUG = nn.Sequential(
            RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
            augs.RandomGrayscale(p=0.2), augs.RandomHorizontalFlip(),
            RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
            augs.RandomResizedCrop((image_size, image_size)),
            augs.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]),
                           std=torch.tensor([0.229, 0.224, 0.225])))

        self.augment1 = default(augment_fn, DEFAULT_AUG)
        self.augment2 = default(augment_fn2, self.augment1)

        self.online_encoder = NetWrapper(net,
                                         projection_size,
                                         projection_hidden_size,
                                         layer=hidden_layer)
        self.target_encoder = None
        self.target_ema_updater = EMA(moving_average_decay)

        self.online_predictor = MLP(projection_size, projection_size,
                                    projection_hidden_size)

        # get device of network and make wrapper same device
        device = get_module_device(net)
        self.to(device)

        # send a mock image tensor to instantiate singleton parameters
        self.forward(torch.randn(2, 3, image_size, image_size, device=device))
コード例 #19
0
ファイル: data.py プロジェクト: edgarriba/lightning-flash
 def default_train_transforms():
     image_size = ImageClassificationData.image_size
     if _KORNIA_AVAILABLE and not os.getenv("FLASH_TESTING", "0") == "1":
         #  Better approach as all transforms are applied on tensor directly
         return {
             "post_tensor_transform":
             nn.Sequential(K.RandomResizedCrop(image_size),
                           K.RandomHorizontalFlip()),
             "per_batch_transform_on_device":
             nn.Sequential(
                 K.Normalize(torch.tensor([0.485, 0.456, 0.406]),
                             torch.tensor([0.229, 0.224, 0.225])), )
         }
     else:
         from torchvision import transforms as T  # noqa F811
         return {
             "pre_tensor_transform":
             nn.Sequential(T.RandomResizedCrop(image_size),
                           T.RandomHorizontalFlip()),
             "post_tensor_transform":
             T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
         }
コード例 #20
0
def get_frame_aug(args):
    train_transform = []

    if 'cj' in args.frame_aug:
        _cj = 0.1
        train_transform += [
            #K.RandomGrayscale(p=0.2),
            K.ColorJitter(_cj, _cj, _cj, 0),
        ]

    if 'flip' in args.frame_aug:
        train_transform += [
            K.RandomHorizontalFlip(same_on_batch=True),
        ]

    train_transform.append(kornia.color.Normalize(mean=IMG_MEAN, std=IMG_STD))

    train_transform = nn.Sequential(*train_transform)
    print('Frame augs:', train_transform, args.frame_aug)

    # HACK if you up value the args field, it is a pointer!!!
    patch_size = np.array(args.patch_size)

    def aug(x):
        if 'grid' in args.frame_aug:
            return patch_grid(x,
                              transform=train_transform,
                              shape=patch_size,
                              stride=args.pstride)
        elif 'randpatch' in args.frame_aug:
            return n_patches(x,
                             args.npatch,
                             transform=train_transform,
                             shape=patch_size,
                             scale=args.npatch_scale)
        else:
            return train_transform(x)

    return aug
コード例 #21
0
ファイル: byol.py プロジェクト: cmcmaster1/BYOL
    def __init__(self, net, image_size, hidden_layer = -2, projection_size = 256, projection_hidden_size = 4096, augment_fn = None, moving_average_decay = 0.99):
        super().__init__()

        # default SimCLR augmentation

        DEFAULT_AUG = nn.Sequential(
            RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
            augs.RandomGrayscale(p=0.2),
            augs.RandomHorizontalFlip(),
            RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
            augs.RandomResizedCrop((image_size, image_size))        )

        self.augment = default(augment_fn, DEFAULT_AUG)

        self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer)
        self.target_encoder = None
        self.target_ema_updater = EMA(moving_average_decay)

        self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)

        # send a mock image tensor to instantiate singleton parameters
        self.forward(torch.randn(2, 3, image_size, image_size))
コード例 #22
0
def get_frame_transform(frame_transform_str, img_size, cuda=True):
    tt = []

    if 'gray' in frame_transform_str:
        tt += [K.RandomGrayscale(p=1)]

    if 'crop' in frame_transform_str:
        tt += [
            K.RandomResizedCrop(img_size, scale=(0.8, 0.95), ratio=(0.7, 1.3))
        ]
    else:
        tt += [kornia.geometry.transform.Resize((img_size, img_size))]

    if 'cj' in frame_transform_str:
        _cj = 0.1
        tt += [  #K.RandomGrayscale(p=0.2), 
            K.ColorJitter(_cj, _cj, _cj, _cj)
        ]

    if 'flip' in frame_transform_str:
        tt += [K.RandomHorizontalFlip()]

    return tt
コード例 #23
0
    def test_random_flips(self, device, dtype):
        inp = torch.randn(1, 3, 510, 1020, device=device, dtype=dtype)
        bbox = torch.tensor([[[355, 10], [660, 10], [660, 250], [355, 250]]], device=device, dtype=dtype)

        expected_bbox_vertical_flip = torch.tensor(
            [[[355, 499], [660, 499], [660, 259], [355, 259]]], device=device, dtype=dtype
        )
        expected_bbox_horizontal_flip = torch.tensor(
            [[[664, 10], [359, 10], [359, 250], [664, 250]]], device=device, dtype=dtype
        )

        aug_ver = K.AugmentationSequential(
            K.RandomVerticalFlip(p=1.0), data_keys=["input", "bbox"], return_transform=False, same_on_batch=False
        )

        aug_hor = K.AugmentationSequential(
            K.RandomHorizontalFlip(p=1.0), data_keys=["input", "bbox"], return_transform=False, same_on_batch=False
        )

        out_ver = aug_ver(inp, bbox)
        out_hor = aug_hor(inp, bbox)

        assert_close(out_ver[1], expected_bbox_vertical_flip)
        assert_close(out_hor[1], expected_bbox_horizontal_flip)
コード例 #24
0
    def __init__(self,
                 s_color=0.5,
                 p_color=0.8,
                 p_flip=0.5,
                 p_gray=0.2,
                 p_blur=0.5,
                 kernel_min=0.1,
                 kernel_max=2.) -> None:
        super(KorniaAugmentationPipeline, self).__init__()

        T_hflip = K.RandomHorizontalFlip(p=p_flip)
        T_gray = K.RandomGrayscale(p=p_gray)
        T_color = K.ColorJitter(p_color, 0.8 * s_color, 0.8 * s_color,
                                0.8 * s_color, 0.2 * s_color)

        radius = kernel_max * 2  # https://dsp.stackexchange.com/questions/10057/gaussian-blur-standard-deviation-radius-and-kernel-size
        kernel_size = int(radius * 2 + 1)  # needs to be odd.
        kernel_size = (kernel_size, kernel_size)
        T_blur = K.GaussianBlur(kernel_size=kernel_size,
                                sigma=(kernel_min, kernel_max),
                                p=p_blur)
        #T_blur = KorniaRandomGaussianBlur(kernel_size=kernel_size, sigma=(kernel_min, kernel_max), p=p_blur)

        self.transform = nn.Sequential(T_hflip, T_color, T_gray, T_blur)
コード例 #25
0
    def __init__(self,
                 net,
                 layer_name_list=['avgpool'],
                 image_size=32,
                 hidden_layer=-2,
                 projection_size=256,
                 projection_hidden_size=4096,
                 augment_fn=None,
                 moving_average_decay=0.99,
                 device_='cuda',
                 number_of_classes=10,
                 mean_data=torch.tensor([0.485, 0.456, 0.406]),
                 std_data=torch.tensor([0.229, 0.224, 0.225])):
        super().__init__()

        DEFAULT_AUG = nn.Sequential(
            augs.RandomHorizontalFlip(),
            augs.RandomResizedCrop((image_size, image_size)),
            augs.Normalize(mean=mean_data, std=std_data))

        self.augment = default(augment_fn, DEFAULT_AUG)
        self.device = device_

        self.online_encoder = NetWrapper(net,
                                         projection_size,
                                         projection_hidden_size,
                                         layer_name_list=layer_name_list).to(
                                             self.device)
        self.target_encoder = None
        self.target_ema_updater = EMA(moving_average_decay)

        self.online_predictor = MLP(projection_size, projection_size,
                                    projection_hidden_size).to(self.device)

        # send a mock image tensor to instantiate singleton parameters
        self.forward(torch.randn(2, 3, image_size, image_size).to(self.device))
コード例 #26
0
def get_frame_transform(args, cuda=True):
    imsz = args.img_size
    norm_size = kornia.geometry.transform.Resize((imsz, imsz))
    norm_imgs = kornia.color.Normalize(mean=IMG_MEAN, std=IMG_STD)

    tt = []
    fts = args.frame_transforms  #.split(',')

    if 'gray' in fts:
        tt.append(K.RandomGrayscale(p=1))

    if 'crop' in fts:
        tt.append(
            K.RandomResizedCrop(imsz, scale=(0.8, 0.95), ratio=(0.7, 1.3)))
    else:
        tt.append(norm_size)

    if 'cj2' in fts:
        _cj = 0.2
        tt += [
            K.RandomGrayscale(p=0.2),
            K.ColorJitter(_cj, _cj, _cj, _cj),
        ]
    elif 'cj' in fts:
        _cj = 0.1
        tt += [
            # K.RandomGrayscale(p=0.2),
            K.ColorJitter(_cj, _cj, _cj, 0),
        ]

    if 'flip' in fts:
        tt += [K.RandomHorizontalFlip()]

    if args.npatch > 1 and args.frame_aug != '':
        tt += [get_frame_aug(args)]
    else:
        tt += [norm_imgs]

    print('Frame transforms:', tt, args.frame_transforms)

    # frame_transform_train = MapTransform(transforms.Compose(tt))
    frame_transform_train = transforms.Compose(tt)
    plain = nn.Sequential(norm_size, norm_imgs)

    def with_orig(x):
        if cuda:
            x = x.cuda()
        if x.max() > 1 and x.min() >= 0:
            x = x.float()
            x -= x.min()
            x /= x.max()
        if x.shape[-1] == 3:
            x = x.permute(0, 3, 1, 2)

        patchify = (not args.visualize) or True

        x = (frame_transform_train(x) if patchify else plain(x)).cpu(), \
                plain(x[0:1]).cpu()

        return x

    return with_orig
コード例 #27
0
ファイル: train.py プロジェクト: johndpope/maua-stylegan2
                validation.track_spectral_norm(mod)

    g_ema = Generator(
        args.size,
        args.latent_size,
        args.n_mlp,
        channel_multiplier=args.channel_multiplier,
        constant_input=args.constant_input,
    ).to(device)
    g_ema.requires_grad_(False)
    g_ema.eval()
    accumulate(g_ema, generator, 0)

    augment_fn = nn.Sequential(
        nn.ReflectionPad2d(int((math.sqrt(2) - 1) * args.size / 4)),  # zoom out
        augs.RandomHorizontalFlip(),
        RandomApply(augs.RandomAffine(degrees=0, translate=(0.25, 0.25), shear=(15, 15)), p=0.2),
        RandomApply(augs.RandomRotation(180), p=0.2),
        augs.RandomResizedCrop(size=(args.size, args.size), scale=(1, 1), ratio=(1, 1)),
        RandomApply(augs.RandomResizedCrop(size=(args.size, args.size), scale=(0.5, 0.9)), p=0.1),  # zoom in
        RandomApply(augs.RandomErasing(), p=0.1),
    )
    contrast_learner = (
        ContrastiveLearner(discriminator, args.size, augment_fn=augment_fn, hidden_layer=(-1, 0))
        if args.contrastive > 0
        else None
    )

    g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
    d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
コード例 #28
0
ファイル: image.py プロジェクト: YangRui2015/d3rlpy
 def __init__(self, probability: float = 0.1):
     self._probability = probability
     self._operation = aug.RandomHorizontalFlip(p=probability)
コード例 #29
0
ファイル: test_container.py プロジェクト: shijianjian/kornia
class TestVideoSequential:
    @pytest.mark.parametrize('shape', [(3, 4), (2, 3, 4), (2, 3, 5, 6),
                                       (2, 3, 4, 5, 6, 7)])
    @pytest.mark.parametrize('data_format', ["BCTHW", "BTCHW"])
    def test_exception(self, shape, data_format, device, dtype):
        aug_list = K.VideoSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1),
                                     data_format=data_format,
                                     same_on_frame=True)
        with pytest.raises(AssertionError):
            img = torch.randn(*shape, device=device, dtype=dtype)
            aug_list(img)

    @pytest.mark.parametrize(
        'augmentation',
        [
            K.RandomAffine(360, p=1.0),
            K.CenterCrop((3, 3), p=1.0),
            K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
            K.RandomCrop((5, 5), p=1.0),
            K.RandomErasing(p=1.0),
            K.RandomGrayscale(p=1.0),
            K.RandomHorizontalFlip(p=1.0),
            K.RandomVerticalFlip(p=1.0),
            K.RandomPerspective(p=1.0),
            K.RandomResizedCrop((5, 5), p=1.0),
            K.RandomRotation(360.0, p=1.0),
            K.RandomSolarize(p=1.0),
            K.RandomPosterize(p=1.0),
            K.RandomSharpness(p=1.0),
            K.RandomEqualize(p=1.0),
            K.RandomMotionBlur(3, 35.0, 0.5, p=1.0),
            K.Normalize(torch.tensor([0.5, 0.5, 0.5]),
                        torch.tensor([0.5, 0.5, 0.5]),
                        p=1.0),
            K.Denormalize(torch.tensor([0.5, 0.5, 0.5]),
                          torch.tensor([0.5, 0.5, 0.5]),
                          p=1.0),
        ],
    )
    @pytest.mark.parametrize('data_format', ["BCTHW", "BTCHW"])
    def test_augmentation(self, augmentation, data_format, device, dtype):
        input = torch.randint(255, (1, 3, 3, 5, 6), device=device,
                              dtype=dtype).repeat(2, 1, 1, 1, 1) / 255.0
        torch.manual_seed(21)
        aug_list = K.VideoSequential(augmentation,
                                     data_format=data_format,
                                     same_on_frame=True)
        reproducibility_test(input, aug_list)

    @pytest.mark.parametrize(
        'augmentations',
        [
            [
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                K.RandomAffine(360, p=1.0)
            ],
            [
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0)
            ],
            [K.RandomAffine(360, p=1.0),
             kornia.color.BgrToRgb()],
            [
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.0),
                K.RandomAffine(360, p=0.0)
            ],
            [K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.0)],
            [K.RandomAffine(360, p=0.0)],
            [
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                K.RandomAffine(360, p=1.0),
                K.RandomMixUp(p=1.0)
            ],
        ],
    )
    @pytest.mark.parametrize('data_format', ["BCTHW", "BTCHW"])
    @pytest.mark.parametrize('random_apply',
                             [1, (1, 1), (1, ), 10, True, False])
    def test_same_on_frame(self, augmentations, data_format, random_apply,
                           device, dtype):
        aug_list = K.VideoSequential(*augmentations,
                                     data_format=data_format,
                                     same_on_frame=True,
                                     random_apply=random_apply)

        if data_format == 'BCTHW':
            input = torch.randn(2, 3, 1, 5, 6, device=device,
                                dtype=dtype).repeat(1, 1, 4, 1, 1)
            output = aug_list(input)
            if aug_list.return_label:
                output, _ = output
            assert (output[:, :, 0] == output[:, :, 1]).all()
            assert (output[:, :, 1] == output[:, :, 2]).all()
            assert (output[:, :, 2] == output[:, :, 3]).all()
        if data_format == 'BTCHW':
            input = torch.randn(2, 1, 3, 5, 6, device=device,
                                dtype=dtype).repeat(1, 4, 1, 1, 1)
            output = aug_list(input)
            if aug_list.return_label:
                output, _ = output
            assert (output[:, 0] == output[:, 1]).all()
            assert (output[:, 1] == output[:, 2]).all()
            assert (output[:, 2] == output[:, 3]).all()
        reproducibility_test(input, aug_list)

    @pytest.mark.parametrize(
        'augmentations',
        [
            [K.RandomAffine(360, p=1.0)],
            [K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0)],
            [
                K.RandomAffine(360, p=0.0),
                K.ImageSequential(K.RandomAffine(360, p=0.0))
            ],
        ],
    )
    @pytest.mark.parametrize('data_format', ["BCTHW", "BTCHW"])
    def test_against_sequential(self, augmentations, data_format, device,
                                dtype):
        aug_list_1 = K.VideoSequential(*augmentations,
                                       data_format=data_format,
                                       same_on_frame=False)
        aug_list_2 = torch.nn.Sequential(*augmentations)

        if data_format == 'BCTHW':
            input = torch.randn(2, 3, 1, 5, 6, device=device,
                                dtype=dtype).repeat(1, 1, 4, 1, 1)
        if data_format == 'BTCHW':
            input = torch.randn(2, 1, 3, 5, 6, device=device,
                                dtype=dtype).repeat(1, 4, 1, 1, 1)

        torch.manual_seed(0)
        output_1 = aug_list_1(input)

        torch.manual_seed(0)
        if data_format == 'BCTHW':
            input = input.transpose(1, 2)
        output_2 = aug_list_2(input.reshape(-1, 3, 5, 6))
        output_2 = output_2.view(2, 4, 3, 5, 6)
        if data_format == 'BCTHW':
            output_2 = output_2.transpose(1, 2)
        assert (output_1 == output_2).all(), dict(aug_list_1._params)

    @pytest.mark.jit
    @pytest.mark.skip(reason="turn off due to Union Type")
    def test_jit(self, device, dtype):
        B, C, D, H, W = 2, 3, 5, 4, 4
        img = torch.ones(B, C, D, H, W, device=device, dtype=dtype)
        op = K.VideoSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1),
                               same_on_frame=True)
        op_jit = torch.jit.script(op)
        assert_close(op(img), op_jit(img))
                                                 mode="train",
                                                 download=True)
val_dataset = l2l.vision.datasets.MiniImagenet(root="data",
                                               mode="validation",
                                               download=True)

transform = {
    "per_sample_transform":
    nn.Sequential(
        ApplyToKeys(
            DataKeys.INPUT,
            nn.Sequential(
                torchvision.transforms.ToTensor(),
                Kg.Resize((196, 196)),
                # SPATIAL
                Ka.RandomHorizontalFlip(p=0.25),
                Ka.RandomRotation(degrees=90.0, p=0.25),
                Ka.RandomAffine(degrees=1 * 5.0,
                                shear=1 / 5,
                                translate=1 / 20,
                                p=0.25),
                Ka.RandomPerspective(distortion_scale=1 / 25, p=0.25),
                # PIXEL-LEVEL
                Ka.ColorJitter(brightness=1 / 30, p=0.25),  # brightness
                Ka.ColorJitter(saturation=1 / 30, p=0.25),  # saturation
                Ka.ColorJitter(contrast=1 / 30, p=0.25),  # contrast
                Ka.ColorJitter(hue=1 / 30, p=0.25),  # hue
                Ka.RandomMotionBlur(kernel_size=2 * (4 // 3) + 1,
                                    angle=1,
                                    direction=1.0,
                                    p=0.25),