コード例 #1
0
ファイル: test_homography.py プロジェクト: youtang1993/kornia
    def test_dirty_points_and_gradcheck(self, batch_size, device, dtype):
        # generate input data
        points_src = torch.rand(batch_size, 10, 2, device=device, dtype=dtype)
        H = kornia.eye_like(3, points_src)
        H = H * 0.3 * torch.rand_like(H)
        H = H / H[:, 2:3, 2:3]

        points_src = 100. * torch.rand(
            batch_size, 20, 2, device=device, dtype=dtype)
        points_dst = kornia.transform_points(H, points_src)

        # making last point an outlier
        points_dst[:, -1, :] += 20

        weights = torch.ones(batch_size, 20, device=device, dtype=dtype)

        # compute transform from source to target
        dst_homo_src = find_homography_dlt_iterated(points_src, points_dst,
                                                    weights, 0.5, 10)

        assert_allclose(kornia.transform_points(dst_homo_src,
                                                points_src[:, :-1]),
                        points_dst[:, :-1],
                        rtol=1e-3,
                        atol=1e-3)
コード例 #2
0
    def test_clean_points_and_gradcheck(self, batch_size, device):
        # generate input data
        dtype = torch.float64
        H = (torch.eye(3, device=device)[None].repeat(batch_size, 1, 1) +
             0.3 * torch.rand(batch_size, 3, 3, device=device))
        H = H / H[:, 2:3, 2:3]

        points_src = torch.rand(batch_size, 10, 2).to(device)
        points_dst = kornia.transform_points(H, points_src)
        weights = torch.ones(batch_size, 10, device=device)

        # compute transform from source to target
        dst_homo_src = find_homography_dlt_iterated(points_src, points_dst,
                                                    weights, 10)

        assert_allclose(kornia.transform_points(dst_homo_src, points_src),
                        points_dst,
                        rtol=1e-3,
                        atol=1e-4)

        # compute gradient check
        points_src = utils.tensor_to_gradcheck_var(points_src)  # to var
        points_dst = utils.tensor_to_gradcheck_var(points_dst)  # to var
        weights = utils.tensor_to_gradcheck_var(weights)  # to var
        assert gradcheck(kornia.find_homography_dlt_iterated, (
            points_src,
            points_dst,
            weights,
        ),
                         rtol=1e-3,
                         atol=1e-4,
                         raise_exception=True)
コード例 #3
0
def test_normalize_pixel_grid(device, dtype):
    if device.type == 'cuda' and dtype == torch.float16:
        pytest.skip('"inverse_cuda" not implemented for "Half"')

    # generate input data
    batch_size = 1
    height, width = 2, 4

    # create points grid
    grid_norm = kornia.utils.create_meshgrid(height, width, normalized_coordinates=True, device=device, dtype=dtype)

    assert grid_norm.device == device
    assert grid_norm.dtype == dtype
    grid_norm = torch.unsqueeze(grid_norm, dim=0)

    grid_pix = kornia.utils.create_meshgrid(height, width, normalized_coordinates=False, device=device, dtype=dtype)

    assert grid_pix.device == device
    assert grid_pix.dtype == dtype
    grid_pix = torch.unsqueeze(grid_pix, dim=0)

    # grid from pixel space to normalized
    norm_trans_pix = kornia.normal_transform_pixel(height, width, device=device, dtype=dtype)  # 1x3x3
    pix_trans_norm = torch.inverse(norm_trans_pix)  # 1x3x3
    # transform grids
    grid_pix_to_norm = kornia.transform_points(norm_trans_pix, grid_pix)
    grid_norm_to_pix = kornia.transform_points(pix_trans_norm, grid_norm)
    assert_close(grid_pix, grid_norm_to_pix)
    assert_close(grid_norm, grid_pix_to_norm)
コード例 #4
0
ファイル: test_projwarp.py プロジェクト: zeta1999/kornia
    def test_get_perspective_transform3d(self, batch_size, device, dtype):
        # generate input data
        d_max, h_max, w_max = 16, 64, 32  # height, width
        d = torch.ceil(d_max * torch.rand(batch_size, device=device, dtype=dtype))
        h = torch.ceil(h_max * torch.rand(batch_size, device=device, dtype=dtype))
        w = torch.ceil(w_max * torch.rand(batch_size, device=device, dtype=dtype))

        norm = torch.rand(batch_size, 8, 3, device=device, dtype=dtype)
        points_src = torch.rand_like(norm, device=device, dtype=dtype)
        points_dst = points_src + norm

        # compute transform from source to target
        dst_homo_src = kornia.get_perspective_transform3d(points_src, points_dst)

        # TODO: get_perspective_transform3d seems to be correct since it would result in the
        # expected output for cropping volumes. Not sure what is going on here.
        assert_allclose(
            kornia.transform_points(dst_homo_src, points_src), points_dst, rtol=1e-4, atol=1e-4)

        # compute gradient check
        points_src = utils.tensor_to_gradcheck_var(points_src)  # to var
        points_dst = utils.tensor_to_gradcheck_var(points_dst)  # to var
        assert gradcheck(
            kornia.get_perspective_transform3d, (
                points_src,
                points_dst,
            ),
            raise_exception=True)
コード例 #5
0
 def test_transform2d_apply(self, device, dtype):
     height, width = 2, 5
     input = torch.tensor([[0., 0.], [width - 1, height - 1]], device=device, dtype=dtype)
     expected = torch.tensor([[-1., -1.], [1., 1.]], device=device, dtype=dtype)
     transform = kornia.normal_transform_pixel(height, width, device=device, dtype=dtype)
     output = kornia.transform_points(transform, input)
     assert_allclose(output, expected.to(device=device, dtype=dtype), atol=1e-4, rtol=1e-4)
コード例 #6
0
 def test_transform3d_apply(self, device, dtype):
     depth, height, width = 3, 2, 5
     input = torch.tensor([[0.0, 0.0, 0.0], [width - 1, height - 1, depth - 1]], device=device, dtype=dtype)
     expected = torch.tensor([[-1.0, -1.0, -1.0], [1.0, 1.0, 1.0]], device=device, dtype=dtype)
     transform = kornia.normal_transform_pixel3d(depth, height, width, device=device, dtype=dtype)
     output = kornia.transform_points(transform, input)
     assert_close(output, expected.to(device=device, dtype=dtype), atol=1e-4, rtol=1e-4)
コード例 #7
0
ファイル: test_imgwarp.py プロジェクト: manyids2/kornia-1
def test_get_perspective_transform(batch_size, device):
    # generate input data
    h_max, w_max = 64, 32  # height, width
    h = torch.ceil(h_max * torch.rand(batch_size)).to(device)
    w = torch.ceil(w_max * torch.rand(batch_size)).to(device)

    norm = torch.rand(batch_size, 4, 2).to(device)
    points_src = torch.zeros_like(norm)
    points_src[:, 1, 0] = h
    points_src[:, 2, 1] = w
    points_src[:, 3, 0] = h
    points_src[:, 3, 1] = w
    points_dst = points_src + norm

    # compute transform from source to target
    dst_homo_src = kornia.get_perspective_transform(points_src, points_dst)

    assert_allclose(kornia.transform_points(dst_homo_src, points_src),
                    points_dst)

    # compute gradient check
    points_src = utils.tensor_to_gradcheck_var(points_src)  # to var
    points_dst = utils.tensor_to_gradcheck_var(points_dst)  # to var
    assert gradcheck(kornia.get_perspective_transform, (
        points_src,
        points_dst,
    ),
                     raise_exception=True)
コード例 #8
0
def generate_scene(num_views: int, num_points: int) -> Dict[str, torch.Tensor]:
    # Generate the 3d points
    points3d = torch.rand(1, num_points, 3)  # NxMx3

    # Create random camera matrix
    K = epipolar.random_intrinsics(0.0, 100.0)  # 1x3x3

    # Create random rotation per view
    ang = torch.rand(num_views, 1) * kornia.pi * 2.0

    rvec = torch.rand(num_views, 3)
    rvec = ang * rvec / torch.norm(rvec, dim=1, keepdim=True)  # Nx3
    rot_mat = kornia.angle_axis_to_rotation_matrix(rvec)  # Nx3x3
    # matches with cv2.Rodrigues -> yay !

    # Create random translation per view
    tx = torch.empty(num_views).uniform_(-0.5, 0.5)
    ty = torch.empty(num_views).uniform_(-0.5, 0.5)
    tz = torch.empty(num_views).uniform_(-1.0, 2.0)
    tvec = torch.stack([tx, ty, tz], dim=1)[..., None]

    # Make sure the shape is in front of the camera
    points3d_trans = (rot_mat @ points3d.transpose(-2, -1)) + tvec
    min_dist = torch.min(points3d_trans[:, 2], dim=1)[0]
    tvec[:, 2, 0] = torch.where(min_dist < 0, tz - min_dist + 1.0, tz)

    # compute projection matrices
    P = epipolar.projection_from_KRt(K, rot_mat, tvec)

    # project points3d and backproject to image plane
    points2d = kornia.transform_points(P, points3d.expand(num_views, -1, -1))

    return dict(K=K, R=rot_mat, t=tvec, P=P, points3d=points3d, points2d=points2d)
コード例 #9
0
ファイル: homography.py プロジェクト: jhacsonmeza/kornia
def find_homography_dlt_iterated(points1: torch.Tensor,
                                 points2: torch.Tensor,
                                 weights: torch.Tensor,
                                 soft_inl_th: float = 3.0,
                                 n_iter: int = 5) -> torch.Tensor:
    r"""Computes the homography matrix using the iteratively-reweighted least squares (IRWLS).

    The linear system is solved by using the Reweighted Least Squares Solution for the 4 Points algorithm.

    Args:
        points1: A set of points in the first image with a tensor shape :math:`(B, N, 2)`.
        points2: A set of points in the second image with a tensor shape :math:`(B, N, 2)`.
        weights: Tensor containing the weights per point correspondence with a shape of :math:`(B, N)`.
          Used for the first iteration of the IRWLS.
        soft_inl_th: Soft inlier threshold used for weight calculation.
        n_iter: number of iterations.

    Returns:
        the computed homography matrix with shape :math:`(B, 3, 3)`.
    """
    '''Function, which finds homography via iteratively-reweighted
    least squares ToDo: add citation'''
    H: torch.Tensor = find_homography_dlt(points1, points2, weights)
    for i in range(n_iter - 1):
        pts1_in_2: torch.Tensor = kornia.transform_points(H, points1)
        error_squared: torch.Tensor = (pts1_in_2 - points2).pow(2).sum(dim=-1)
        weights_new: torch.Tensor = torch.exp(-error_squared /
                                              (2.0 * (soft_inl_th**2)))
        H = find_homography_dlt(points1, points2, weights_new)
    return H
コード例 #10
0
 def test_transform2d_apply(self):
     height, width = 2, 5
     input = torch.tensor([[0., 0.], [width - 1, height - 1]])
     expected = torch.tensor([[-1., -1.], [1., 1.]])
     transform = kornia.normal_transform_pixel(height, width)
     output = kornia.transform_points(transform, input)
     assert_allclose(output, expected)
コード例 #11
0
ファイル: main.py プロジェクト: shijianjian/kornia
        def draw_rectangle(image, dst_homo_src):
            height, width = image.shape[:2]
            pts_src = torch.FloatTensor(
                [[[-1, -1], [1, -1], [1, 1],
                  [-1,
                   1]]]  # top-left  # bottom-left  # bottom-right  # top-right
            ).to(dst_homo_src.device)
            # transform points
            pts_dst = dgm.transform_points(torch.inverse(dst_homo_src),
                                           pts_src)

            def compute_factor(size):
                return 1.0 * size / 2

            def convert_coordinates_to_pixel(coordinates, factor):
                return factor * (coordinates + 1.0)

            # compute conversion factor
            x_factor = compute_factor(width - 1)
            y_factor = compute_factor(height - 1)
            pts_dst = pts_dst.cpu().squeeze().detach().numpy()
            pts_dst[...,
                    0] = convert_coordinates_to_pixel(pts_dst[..., 0],
                                                      x_factor)
            pts_dst[...,
                    1] = convert_coordinates_to_pixel(pts_dst[..., 1],
                                                      y_factor)

            # do the actual drawing
            for i in range(4):
                pt_i, pt_ii = tuple(pts_dst[i % 4]), tuple(pts_dst[(i + 1) %
                                                                   4])
                image = cv2.line(image, pt_i, pt_ii, (255, 0, 0), 3)
            return image
コード例 #12
0
    def test_transform_points(self, batch_size, num_points, num_dims, device, dtype):
        # generate input data
        eye_size = num_dims + 1
        points_src = torch.rand(batch_size, num_points, num_dims, device=device, dtype=dtype)

        dst_homo_src = utils.create_random_homography(batch_size, eye_size).to(device=device, dtype=dtype)
        dst_homo_src = dst_homo_src.to(device)

        # transform the points from dst to ref
        points_dst = kornia.transform_points(dst_homo_src, points_src)

        # transform the points from ref to dst
        src_homo_dst = torch.inverse(dst_homo_src)
        points_dst_to_src = kornia.transform_points(src_homo_dst, points_dst)

        # projected should be equal as initial
        assert_allclose(points_src, points_dst_to_src, atol=1e-4, rtol=1e-4)
コード例 #13
0
ファイル: test_homography.py プロジェクト: youtang1993/kornia
    def test_clean_points(self, batch_size, device, dtype):
        # generate input data
        points_src = torch.rand(batch_size, 10, 2, device=device, dtype=dtype)
        H = kornia.eye_like(3, points_src)
        H = H * 0.3 * torch.rand_like(H)
        H = H / H[:, 2:3, 2:3]

        points_dst = kornia.transform_points(H, points_src)
        weights = torch.ones(batch_size, 10, device=device, dtype=dtype)

        # compute transform from source to target
        dst_homo_src = find_homography_dlt(points_src, points_dst, weights)

        assert_allclose(kornia.transform_points(dst_homo_src, points_src),
                        points_dst,
                        rtol=1e-3,
                        atol=1e-4)
コード例 #14
0
    def test_jit(self):
        @torch.jit.script
        def op_script(transform, points):
            return kornia.transform_points(transform, points)

        points = torch.ones(1, 2, 2)
        transform = torch.eye(3)[None]
        actual = op_script(transform, points)
        expected = kornia.transform_points(transform, points)

        assert_allclose(actual, expected)
コード例 #15
0
ファイル: utils.py プロジェクト: zhwzhong/deep-video-mvs
def warp_frame_depth(
        image_src: torch.Tensor,
        depth_dst: torch.Tensor,
        src_trans_dst: torch.Tensor,
        camera_matrix: torch.Tensor,
        normalize_points: bool = False,
        sampling_mode='bilinear') -> torch.Tensor:
    # TAKEN FROM KORNIA LIBRARY
    if not isinstance(image_src, torch.Tensor):
        raise TypeError(f"Input image_src type is not a torch.Tensor. Got {type(image_src)}.")

    if not len(image_src.shape) == 4:
        raise ValueError(f"Input image_src musth have a shape (B, D, H, W). Got: {image_src.shape}")

    if not isinstance(depth_dst, torch.Tensor):
        raise TypeError(f"Input depht_dst type is not a torch.Tensor. Got {type(depth_dst)}.")

    if not len(depth_dst.shape) == 4 and depth_dst.shape[-3] == 1:
        raise ValueError(f"Input depth_dst musth have a shape (B, 1, H, W). Got: {depth_dst.shape}")

    if not isinstance(src_trans_dst, torch.Tensor):
        raise TypeError(f"Input src_trans_dst type is not a torch.Tensor. "
                        f"Got {type(src_trans_dst)}.")

    if not len(src_trans_dst.shape) == 3 and src_trans_dst.shape[-2:] == (3, 3):
        raise ValueError(f"Input src_trans_dst must have a shape (B, 3, 3). "
                         f"Got: {src_trans_dst.shape}.")

    if not isinstance(camera_matrix, torch.Tensor):
        raise TypeError(f"Input camera_matrix type is not a torch.Tensor. "
                        f"Got {type(camera_matrix)}.")

    if not len(camera_matrix.shape) == 3 and camera_matrix.shape[-2:] == (3, 3):
        raise ValueError(f"Input camera_matrix must have a shape (B, 3, 3). "
                         f"Got: {camera_matrix.shape}.")
    # unproject source points to camera frame
    points_3d_dst: torch.Tensor = kornia.depth_to_3d(depth_dst, camera_matrix, normalize_points)  # Bx3xHxW

    # transform points from source to destination
    points_3d_dst = points_3d_dst.permute(0, 2, 3, 1)  # BxHxWx3

    # apply transformation to the 3d points
    points_3d_src = kornia.transform_points(src_trans_dst[:, None], points_3d_dst)  # BxHxWx3
    points_3d_src[:, :, :, 2] = torch.relu(points_3d_src[:, :, :, 2])

    # project back to pixels
    camera_matrix_tmp: torch.Tensor = camera_matrix[:, None, None]  # Bx1x1xHxW
    points_2d_src: torch.Tensor = kornia.project_points(points_3d_src, camera_matrix_tmp)  # BxHxWx2

    # normalize points between [-1 / 1]
    height, width = depth_dst.shape[-2:]
    points_2d_src_norm: torch.Tensor = kornia.normalize_pixel_coordinates(points_2d_src, height, width)  # BxHxWx2

    return torch.nn.functional.grid_sample(image_src, points_2d_src_norm, align_corners=True, mode=sampling_mode)
コード例 #16
0
    def test_transform_points(self, batch_size, num_points, num_dims,
                              device_type):
        # generate input data
        eye_size = num_dims + 1
        points_src = torch.rand(batch_size, num_points, num_dims)
        points_src = points_src.to(torch.device(device_type))

        dst_homo_src = utils.create_random_homography(batch_size, eye_size)
        dst_homo_src = dst_homo_src.to(torch.device(device_type))

        # transform the points from dst to ref
        points_dst = kornia.transform_points(dst_homo_src, points_src)

        # transform the points from ref to dst
        src_homo_dst = torch.inverse(dst_homo_src)
        points_dst_to_src = kornia.transform_points(src_homo_dst, points_dst)

        # projected should be equal as initial
        error = utils.compute_mse(points_src, points_dst_to_src)
        assert pytest.approx(error.item(), 0.0)
コード例 #17
0
def test_normalize_pixel_grid():
    # generate input data
    batch_size = 1
    height, width = 2, 4

    # create points grid
    grid_norm = kornia.utils.create_meshgrid(
        height, width, normalized_coordinates=True)
    grid_norm = torch.unsqueeze(grid_norm, dim=0)
    grid_pix = kornia.utils.create_meshgrid(
        height, width, normalized_coordinates=False)
    grid_pix = torch.unsqueeze(grid_pix, dim=0)

    # grid from pixel space to normalized
    norm_trans_pix = kornia.normal_transform_pixel(height, width)  # 1x3x3
    pix_trans_norm = torch.inverse(norm_trans_pix)  # 1x3x3
    # transform grids
    grid_pix_to_norm = kornia.transform_points(norm_trans_pix, grid_pix)
    grid_norm_to_pix = kornia.transform_points(pix_trans_norm, grid_norm)
    assert_allclose(grid_pix, grid_norm_to_pix)
    assert_allclose(grid_norm, grid_pix_to_norm)
コード例 #18
0
ファイル: linalg.py プロジェクト: tejamoy/kornia
def transform_boxes(trans_mat: torch.Tensor,
                    boxes: torch.Tensor,
                    mode: str = "xyxy") -> torch.Tensor:
    r""" Function that applies a transformation matrix to a box or batch of boxes. Boxes must
    be a tensor of the shape (N, 4) or a batch of boxes (B, N, 4) and trans_mat must be a (3, 3)
    transformation matrix or a batch of transformation matrices (B, 3, 3)

    Args:
        trans_mat (torch.Tensor): The transformation matrix to be applied
        boxes (torch.Tensor): The boxes to be transformed
        mode (str): The format in which the boxes are provided. If set to 'xyxy' the boxes
                    are assumed to be in the format (xmin, ymin, xmax, ymax). If set to 'xywh'
                    the boxes are assumed to be in the format (xmin, ymin, width, height).
                    Default: 'xyxy'
    Returns:
        torch.Tensor: The set of transformed points in the specified mode


    """

    if not torch.is_tensor(boxes):
        raise TypeError(f"Boxes type is not a torch.Tensor. Got {type(boxes)}")

    if not torch.is_tensor(trans_mat):
        raise TypeError(
            f"Tranformation matrix type is not a torch.Tensor. Got {type(trans_mat)}"
        )

    if not isinstance(mode, str):
        raise TypeError(f"Mode must be a string. Got {type(mode)}")

    if mode not in ("xyxy", "xywh"):
        raise ValueError(f"Mode must be one of 'xyxy', 'xywh'. Got {mode}")

    # convert boxes to format xyxy
    if mode == "xywh":
        boxes[..., -2] = boxes[..., 0] + boxes[..., -2]  # x + w
        boxes[..., -1] = boxes[..., 1] + boxes[..., -1]  # y + h

    transformed_boxes: torch.Tensor = kornia.transform_points(
        trans_mat, boxes.view(boxes.shape[0], -1, 2))
    transformed_boxes = transformed_boxes.view_as(boxes)

    if mode == 'xywh':
        transformed_boxes[...,
                          2] = transformed_boxes[...,
                                                 2] - transformed_boxes[..., 0]
        transformed_boxes[...,
                          3] = transformed_boxes[...,
                                                 3] - transformed_boxes[..., 1]

    return transformed_boxes
コード例 #19
0
    def test_jit_trace(self, device):
        @torch.jit.script
        def op_script(transform, points):
            return kornia.transform_points(transform, points)

        points = torch.ones(1, 2, 2).to(device)
        transform = torch.eye(3)[None].to(device)
        op_script_trace = torch.jit.trace(op_script, (
            transform,
            points,
        ))
        actual = op_script_trace(transform, points)
        expected = kornia.transform_points(transform, points)

        assert_allclose(actual, expected)
コード例 #20
0
    def test_jit(self, device):
        @torch.jit.script
        def op_script(transform, boxes):
            return kornia.transform_boxes(transform, boxes)

        boxes = torch.tensor([139.2640, 103.0150, 258.0480,
                              307.5075]).to(device)

        trans_mat = torch.tensor([[[-1., 0., 512.], [0., 1., 0.],
                                   [0., 0., 1.]]]).to(device)

        actual = op_script(trans_mat, boxes)
        expected = kornia.transform_points(trans_mat, boxes)

        assert_allclose(actual, expected)
コード例 #21
0
ファイル: utils.py プロジェクト: zhwzhong/deep-video-mvs
def get_differentiable_square_depth_estimation(reference_pose_torch,
                                               measurement_pose_torch,
                                               previous_depth_torch,
                                               full_K_torch,
                                               half_K_torch,
                                               original_image_size,
                                               device):
    batch_size, _, _ = full_K_torch.size()
    R_render = torch.eye(3, dtype=torch.float, device=device)
    T_render = torch.zeros(3, dtype=torch.float, device=device)
    R_render = torch.stack(batch_size * [R_render], dim=0)
    T_render = torch.stack(batch_size * [T_render], dim=0)
    R_render[:, 0, 0] *= -1
    R_render[:, 1, 1] *= -1

    trans = torch.bmm(torch.inverse(reference_pose_torch), measurement_pose_torch)
    points_3d_src = kornia.depth_to_3d(previous_depth_torch, full_K_torch, normalize_points=False)
    points_3d_src = points_3d_src.permute(0, 2, 3, 1)
    points_3d_dst = kornia.transform_points(trans[:, None], points_3d_src).view(batch_size, -1, 3)
    point_cloud_p3d = structures.Pointclouds(points=points_3d_dst, features=None)

    width_normalizer = original_image_size / 4.0
    height_normalizer = original_image_size / 4.0
    px_ndc = (half_K_torch[:, 0, 2] - width_normalizer) / width_normalizer
    py_ndc = (half_K_torch[:, 1, 2] - height_normalizer) / height_normalizer
    fx_ndc = half_K_torch[:, 0, 0] / width_normalizer
    fy_ndc = half_K_torch[:, 1, 1] / height_normalizer

    principal_point = torch.stack([px_ndc, py_ndc], dim=-1)
    focal_length = torch.stack([fx_ndc, fy_ndc], dim=-1)

    cameras = renderer.SfMPerspectiveCameras(focal_length=focal_length,
                                             principal_point=principal_point,
                                             R=R_render,
                                             T=T_render,
                                             device=torch.device('cuda'))

    raster_settings = renderer.PointsRasterizationSettings(
        image_size=int(original_image_size / 2.0),
        radius=0.02,
        points_per_pixel=3)

    depth_renderer = renderer.PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
    rendered_depth = torch.min(depth_renderer(point_cloud_p3d).zbuf, dim=-1)[0]
    depth_hypothesis = torch.relu(rendered_depth).unsqueeze(1)
    return depth_hypothesis
コード例 #22
0
    def transform_grid(self, voxel_grid, grid_to_lidar, lidar_to_cam,
                       cam_to_img):
        """
        Transforms voxel sampling grid into frustum sampling grid
        Args:
            voxel_grid [torch.Tensor(B, X, Y, Z, 3)]: Voxel sampling grid
            grid_to_lidar [torch.Tensor(4, 4)]: Voxel grid to LiDAR unprojection matrix
            lidar_to_cam [torch.Tensor(B, 4, 4)]: LiDAR to camera frame transformation
            cam_to_img [torch.Tensor(B, 3, 4)]: Camera projection matrix
        Returns:
            frustum_grid [torch.Tensor(B, X, Y, Z, 3)]: Frustum sampling grid
        """
        # B是相机数目
        B = lidar_to_cam.shape[0]

        # Create transformation matricies
        V_G = grid_to_lidar  # Voxel Grid -> LiDAR (4, 4)
        C_V = lidar_to_cam  # LiDAR -> Camera (B, 4, 4)
        I_C = cam_to_img  # Camera -> Image (B, 3, 4)
        trans = C_V @ V_G  # grid转到lidar实际坐标,再转到相机坐标再转到像素。主要是为了grid和像素对应。

        # Reshape to match dimensions
        trans = trans.reshape(B, 1, 1, 4, 4)
        voxel_grid = voxel_grid.repeat_interleave(repeats=B, dim=0)

        # Transform to camera frame
        #camera_grid shape: B X Y Z 3
        camera_grid = kornia.transform_points(trans_01=trans,
                                              points_1=voxel_grid)

        # Project to image
        I_C = I_C.reshape(B, 1, 1, 3, 4)
        # image_grid shape: B X Y Z 2; image_depth B X Y Z 1
        image_grid, image_depths = transform_utils.project_to_image(
            project=I_C, points=camera_grid)

        # Convert depths to depth bins
        # Image_depths.shape: B X Y Z 1  落在哪个bin
        image_depths = depth_utils.bin_depths(depth_map=image_depths,
                                              **self.disc_cfg)

        # Stack to form frustum grid
        image_depths = image_depths.unsqueeze(-1)
        # frustum_grid = B X Y Z 3
        frustum_grid = torch.cat((image_grid, image_depths), dim=-1)
        return frustum_grid
コード例 #23
0
    def test_two_view(self, device, dtype):
        num_views: int = 2
        num_points: int = 10
        scene: Dict[str,
                    torch.Tensor] = epi.generate_scene(num_views, num_points)

        P1 = scene['P'][0:1]
        P2 = scene['P'][1:2]
        x1 = scene['points2d'][0:1]
        x2 = scene['points2d'][1:2]

        X = epi.triangulate_points(P1, P2, x1, x2)
        x_reprojected = kornia.transform_points(scene['P'],
                                                X.expand(num_views, -1, -1))

        assert_allclose(scene['points3d'], X, rtol=1e-4, atol=1e-4)
        assert_allclose(scene['points2d'], x_reprojected)
コード例 #24
0
ファイル: utils.py プロジェクト: zhwzhong/deep-video-mvs
def get_non_differentiable_rectangle_depth_estimation(reference_pose_torch,
                                                      measurement_pose_torch,
                                                      previous_depth_torch,
                                                      full_K_torch,
                                                      half_K_torch,
                                                      original_width,
                                                      original_height):
    batch_size, _, _ = reference_pose_torch.shape
    half_width = int(original_width / 2)
    half_height = int(original_height / 2)

    trans = torch.bmm(torch.inverse(reference_pose_torch), measurement_pose_torch)
    points_3d_src = kornia.depth_to_3d(previous_depth_torch, full_K_torch, normalize_points=False)
    points_3d_src = points_3d_src.permute(0, 2, 3, 1)
    points_3d_dst = kornia.transform_points(trans[:, None], points_3d_src)

    points_3d_dst = points_3d_dst.view(batch_size, -1, 3)

    z_values = points_3d_dst[:, :, -1]
    z_values = torch.relu(z_values)
    sorting_indices = torch.argsort(z_values, descending=True)
    z_values = torch.gather(z_values, dim=1, index=sorting_indices)

    sorting_indices_for_points = torch.stack([sorting_indices] * 3, dim=-1)
    points_3d_dst = torch.gather(points_3d_dst, dim=1, index=sorting_indices_for_points)

    projections = torch.round(kornia.project_points(points_3d_dst, half_K_torch.unsqueeze(1))).long()
    is_valid_below = (projections[:, :, 0] >= 0) & (projections[:, :, 1] >= 0)
    is_valid_above = (projections[:, :, 0] < half_width) & (projections[:, :, 1] < half_height)
    is_valid = is_valid_below & is_valid_above

    depth_hypothesis = torch.zeros(size=(batch_size, 1, half_height, half_width)).cuda()
    for projection_index in range(0, batch_size):
        valid_points_zs = z_values[projection_index][is_valid[projection_index]]
        valid_projections = projections[projection_index][is_valid[projection_index]]
        i_s = valid_projections[:, 1]
        j_s = valid_projections[:, 0]
        ij_combined = i_s * half_width + j_s
        _, ij_combined_unique_indices = np.unique(ij_combined.cpu().numpy(), return_index=True)
        ij_combined_unique_indices = torch.from_numpy(ij_combined_unique_indices).long().cuda()
        i_s = i_s[ij_combined_unique_indices]
        j_s = j_s[ij_combined_unique_indices]
        valid_points_zs = valid_points_zs[ij_combined_unique_indices]
        torch.index_put_(depth_hypothesis[projection_index, 0], (i_s, j_s), valid_points_zs)
    return depth_hypothesis
コード例 #25
0
    def transform_grid(self, voxel_grid, grid_to_lidar, lidar_to_cam,
                       cam_to_img):
        """
        Transforms voxel sampling grid into frustum sampling grid
        Args:
            grid: (B, X, Y, Z, 3), Voxel sampling grid
            grid_to_lidar: (4, 4), Voxel grid to LiDAR unprojection matrix
            lidar_to_cam: (B, 4, 4), LiDAR to camera frame transformation
            cam_to_img: (B, 3, 4), Camera projection matrix
        Returns:
            frustum_grid: (B, X, Y, Z, 3), Frustum sampling grid
        """
        B = lidar_to_cam.shape[0]

        # Create transformation matricies
        V_G = grid_to_lidar  # Voxel Grid -> LiDAR (4, 4)
        C_V = lidar_to_cam  # LiDAR -> Camera (B, 4, 4)
        I_C = cam_to_img  # Camera -> Image (B, 3, 4)
        trans = C_V @ V_G

        # Reshape to match dimensions
        trans = trans.reshape(B, 1, 1, 4, 4)
        voxel_grid = voxel_grid.repeat_interleave(repeats=B, dim=0)

        # Transform to camera frame
        camera_grid = kornia.transform_points(trans_01=trans,
                                              points_1=voxel_grid)

        # Project to image
        I_C = I_C.reshape(B, 1, 1, 3, 4)
        image_grid, image_depths = transform_utils.project_to_image(
            project=I_C, points=camera_grid)

        # Convert depths to depth bins
        image_depths = transform_utils.bin_depths(depth_map=image_depths,
                                                  **self.disc_cfg)

        # Stack to form frustum grid
        image_depths = image_depths.unsqueeze(-1)
        frustum_grid = torch.cat((image_grid, image_depths), dim=-1)
        return frustum_grid
コード例 #26
0
def normalize_points(points: torch.Tensor,
                     eps: float = 1e-8) -> Tuple[torch.Tensor, torch.Tensor]:
    r"""Normalizes points (isotropic).

    Computes the transformation matrix such that the two principal moments of the set of points
    are equal to unity, forming an approximately symmetric circular cloud of points of radius 1
    about the origin. Reference: Hartley/Zisserman 4.4.4 pag.107

    This operation is an essential step before applying the DLT algorithm in order to consider
    the result as optimal.

    Args:
       points: Tensor containing the points to be normalized with shape :math:`(B, N, 2)`.
       eps: epsilon value to avoid numerical instabilities.

    Returns:
       tuple containing the normalized points in the shape :math:`(B, N, 2)` and the transformation matrix
       in the shape :math:`(B, 3, 3)`.

    """
    assert len(points.shape) == 3, points.shape
    assert points.shape[-1] == 2, points.shape

    x_mean = torch.mean(points, dim=1, keepdim=True)  # Bx1x2

    scale = (points - x_mean).norm(dim=-1).mean(dim=-1)  # B
    scale = torch.sqrt(torch.tensor(2.0)) / (scale + eps)  # B

    ones, zeros = torch.ones_like(scale), torch.zeros_like(scale)

    transform = torch.stack([
        scale, zeros, -scale * x_mean[..., 0, 0], zeros, scale,
        -scale * x_mean[..., 0, 1], zeros, zeros, ones
    ],
                            dim=-1)  # Bx9

    transform = transform.view(-1, 3, 3)  # Bx3x3
    points_norm = kornia.transform_points(transform, points)  # BxNx2

    return (points_norm, transform)
コード例 #27
0
def oneway_transfer_error(pts1: torch.Tensor,
                          pts2: torch.Tensor,
                          H: torch.Tensor,
                          squared: bool = True,
                          eps: float = 1e-8) -> torch.Tensor:
    r"""Return transfer error in image 2 for correspondences given the homography matrix.

    Args:
        pts1: correspondences from the left images with shape
          (B, N, 2 or 3). If they are homogeneous, converted automatically.
        pts2: correspondences from the right images with shape
          (B, N, 2 or 3). If they are homogeneous, converted automatically.
        H: Homographies with shape :math:`(B, 3, 3)`.
        squared: if True (default), the squared distance is returned.
        eps: Small constant for safe sqrt.

    Returns:
        the computed distance with shape :math:`(B, N)`.

    """
    if not isinstance(H, torch.Tensor):
        raise TypeError(f"H type is not a torch.Tensor. Got {type(H)}")

    if (len(H.shape) != 3) or not H.shape[-2:] == (3, 3):
        raise ValueError(f"H must be a (*, 3, 3) tensor. Got {H.shape}")

    if pts1.size(-1) == 3:
        pts1 = kornia.convert_points_from_homogeneous(pts1)

    if pts2.size(-1) == 3:
        pts2 = kornia.convert_points_from_homogeneous(pts2)

    # From Hartley and Zisserman, Error in one image (4.6)
    # dist = \sum_{i} ( d(x', Hx)**2)
    pts1_in_2: torch.Tensor = kornia.transform_points(H, pts1)
    error_squared: torch.Tensor = (pts1_in_2 - pts2).pow(2).sum(dim=-1)
    if squared:
        return error_squared
    return (error_squared + eps).sqrt()
コード例 #28
0
 def op_script(transform, points):
     return kornia.transform_points(transform, points)