コード例 #1
0
ファイル: transformer.py プロジェクト: 42cosmos/KoSpeech
    def forward(self,
                targets: Tensor,
                input_lengths: Optional[Any] = None,
                memory: Tensor = None) -> Tuple[Tensor, Tensor, Tensor]:
        self_attns, memory_attns = list(), list()

        non_pad_mask = get_pad_mask(targets, pad_id=self.pad_id).eq(False)
        self_attn_mask = get_attn_pad_mask(
            targets, self.pad_id) | get_subsequent_mask(targets)
        memory_mask = get_pad_mask(
            memory, input_lengths).squeeze(-1).unsqueeze(1).expand(
                -1, targets.size(1), -1)

        output = self.input_dropout(
            self.embedding(targets) * self.logit_scale +
            self.positional_encoding(targets.size(1)))

        for layer in self.layers:
            output, self_attn, memory_attn = layer(output, memory,
                                                   non_pad_mask,
                                                   self_attn_mask, memory_mask)
            self_attns.append(self_attn)
            memory_attns.append(memory_attn)

        return output, self_attns, memory_attns
コード例 #2
0
ファイル: transformer.py プロジェクト: 42cosmos/KoSpeech
    def forward(self,
                inputs: Tensor,
                input_lengths: Tensor = None) -> Tuple[Tensor, Tensor]:
        self_attns = list()

        non_pad_mask = get_pad_mask(inputs,
                                    input_lengths=input_lengths).eq(False)
        length = inputs.size(1)
        self_attn_mask = get_pad_mask(
            inputs,
            input_lengths).squeeze(-1).unsqueeze(1).expand(-1, length, -1)

        output = self.input_dropout(
            self.input_layer_norm(self.input_proj(inputs)) +
            self.positional_encoding(inputs.size(1)))

        for layer in self.layers:
            output, attn = layer(output, non_pad_mask, self_attn_mask)
            self_attns.append(attn)

        return output, self_attns
コード例 #3
0
ファイル: transformer.py プロジェクト: wonwizard/KoSpeech
    def forward(self, inputs: Tensor, input_lengths: Tensor = None):
        """
        Args:
            inputs: BxT_inputxD
            input_lengths: Bx1
        """
        self_attns = list()

        non_pad_mask = get_pad_mask(inputs,
                                    input_lengths=input_lengths).eq(False)
        self_attn_mask = get_attn_pad_mask(inputs, input_lengths,
                                           inputs.size(1))

        output = self.input_dropout(
            self.input_norm(self.input_proj(inputs)) +
            self.positional_encoding(inputs.size(1)))

        for layer in self.layers:
            output, attn = layer(output, non_pad_mask, self_attn_mask)
            self_attns.append(attn)

        return output, self_attns
コード例 #4
0
ファイル: transformer.py プロジェクト: wonwizard/KoSpeech
    def forward(self,
                inputs: Tensor,
                input_lengths: Optional[Any] = None,
                memory: Tensor = None):
        self_attns, memory_attns = list(), list()
        batch_size, output_length = inputs.size(0), inputs.size(1)

        non_pad_mask = get_pad_mask(inputs, pad_id=self.pad_id).eq(False)
        self_attn_mask = get_decoder_self_attn_mask(inputs, inputs,
                                                    self.pad_id)
        memory_mask = get_attn_pad_mask(memory, input_lengths, output_length)

        output = self.input_dropout(
            self.embedding(inputs) + self.positional_encoding(inputs.size(1)))

        for layer in self.layers:
            output, self_attn, memory_attn = layer(output, memory,
                                                   non_pad_mask,
                                                   self_attn_mask, memory_mask)
            self_attns.append(self_attn)
            memory_attns.append(memory_attn)

        return output, self_attns, memory_attns